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This appendix provides additional material to “Choice Deferral, Indeci-
siveness and Preference for Flexibility”. Section 1 presents our model in a
simple, two dimensional case, which also allows us to graphically depict the
logic behind our result. In Section 2, this version of the model is used to
lay out 3 counterexamples that guarantee the necessity and independence of
each of our assumptions; we also show why our result cannot be used to per-
form comparative statics linking more indecisiveness to stronger desire for
flexibility. In Sections 3 and 4, we discuss a strengthening and a weakening
of the Cautious Deferral rule and derive conclusions for the identification of
the incomplete relation. Finally, Section 5 discusses the relationship between
the present framework and the Dominance relation of Kreps (1979).

1. The two-dimensional case

It is well known that under a continuity assumption1 stronger than our
Axiom 2, a complete preference on X satisfies Axiom 1 if and only if it can
be represented by a functional V : X → R of the form:

V (A) =

∫
U

max
a∈A

Eu(a) dµ(u) (1.1)

where U is a set of doubly normalized Bernoulli functions over Z, Eu(a) is
the expectation of u under a, and µ is a countably additive measure over U .
When the measure µ has finite support, V assumes a particularly simple
form, namely V (A) =

∑n
i αi maxa∈A Eui(a). In this case, if we let Φ(A)

be the vector (maxa∈A Eu1(a), ...,maxa∈A Eun(a)), we can identify every el-
ement of X with it’s image in Φ[X], so that the indifference curves induced

1For example L-continuity, which implies, for a complete preference, Lipschitz conti-
nuity of the representing functional (See Dekel, Lipman, Rustichini and Sarver (2007)).
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by V can be represented as hyperplanes in Rn perpendicular to (α1, ..., αn).2

The figure below portrays this situation for the case n = 2:

maxEu1

maxEu2

Figure 1.

-A point on the plane is iden-
tified with a set A ∈ X via the
correspondence

Φ(A) = (max
A

Eu1 ,max
A

Eu2).

-The shaded area is the con-
vex set Φ[X], the image of the
domain.

-The dashed lines represent

indifference curves for V , each

perpendicular to the vector

(α1, α2).

(α1, α2)

Φ[X]

In this representation of the environment, set inclusion can be easily vi-
sualized: sets that include A have Φ image in the upper right quadrant with
the origin translated to Φ(A), while sets included in A lay in the lower left

A ⊆ B

B ⊆ A

A

Figure 2a.

The light grey area contains
the sets including A, the dark
grey area those included in A.

A

Figure 2b.

The point corresponding to
Φ(A ∪ B) coincides with
max{Φ(A),Φ(B)}.

A

B

A ∪B

maxEu1 maxEu1

maxEu2 maxEu2

quadrant (Fig.2 a);
moreover, for any two
setsA andB, the point
representing their union
corresponds to the co-
ordinate wise maxi-
mum of the vectors
Φ(A) and Φ(B) (Fig.
2b).

Also the incomplete
preorder < can be vi-
sualized in the above
graph, as long as some

additional conditions are satisfied. In fact, as is shown in the appendix of

2In fact it can be proved that whenever µ has support of finite cardinality n, given an
appropriate normalization for U , the image Φ[X] is a convex subset of Rn containing the
origin, while Span(Φ[X]) = {λ(Φ[X]− Φ[X]) | λ > 0} is equal to Rn.
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the main text, under our assumptions, < is the intersection of a collection
of complete preorders {<i}i∈I satisfying Continuity and Independence. If in
addition each such preorder has an integral representation such as V above,
and if the support of the measures corresponding to such Vi’s is included in
{u1, u2}, we can identify every <i with the pair weights (αi1, α

i
2) it assigns to

each Bernoulli utility. In this case a set B is preferred to A for every <i (and
thus for <) only if it is contained in the intersection of all half-spaces corre-
sponding to the upper contour sets of A under each <i, namely the translate
of K∗, the dual cone of K = {(αi1, αi2) | Vi =

∑
j α

i
j maxEuj for some i ∈ I}.

At the same time one can see that any proper completion of < will corre-
spond to a vector (α1, α2) contained in K:

B < A

A < B

K∗

A ./ B

A ./ B

−K∗

Figure 3a.

-The shaded cone is the one generated
by the vectors in K translated to A.

-The dual K∗, in grey, contains all sets
preferred to A under <.

-The negative of the dual, highlighted
in dark grey, contains all sets B that
are <-dominated by A.

A

K

Figure 3b.

-The thick dashed line is the indiffer-
ence curve of a possible completion <∗

of < going through A.

-The normal to such indifference
curve identifies the functional V ∗ =∑

i α
∗
i maxEui representing the com-

pletion.

B <∗ A

A <∗ B

(α∗1, α
∗
2)

A

maxEu1 maxEu1

maxEu2 maxEu2

We provide below an alternative proof of Theorem 1, which works specifically
in the finite dimensional case and which will be useful when we introduce
our counterexamples.

1.1. Proof Sketch

There are two distinct cases to consider:

Case I:
Assume there are setsA ./ B such that maxB Eu1 < maxA Eu1 and maxB Eu2 >
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maxA Eu2 . In this case, the functional V ∗ of a completion satisfying Cau-
tious Deferral will necessarily need to satisfy

V ∗(A ∪B)− V ∗(B) = α∗1(max
A

Eu1 −max
B

Eu1) ≥ 0 =⇒ α∗1 ≥ 0

and

V ∗(A ∪B)− V ∗(A) = α∗2(max
B

Eu2 −max
A

Eu2) ≥ 0 =⇒ α∗2 ≥ 0

Thus the measure over {u1, u2} that identifies V ∗ is positive, which means,
as shown in DLR, that the preference <∗ is monotone.3

The argument is illustrated in Figure 4 below, where we are assuming
for simplicity that Φ(A) = (0, 0):

A ∪BB

A AmaxEu1 maxEu1

maxEu2 maxEu2

β1

β2

β1

β2

B < A

A < B

Figure 4a.

Moving from B in direction β1, or
from A in direction β2, must be an
improvement for any completion <∗

satisfying Cautious Deferral.

P

K

K ∩ P

Figure 4b.

-The set of directions spanned by
{β1,β2} coincides with the positive
cone P, patterned in dots.

-The thick dashed arrows delimit the
cone K of possible directions in which
a completion of < must lie.

-A direction in the shaded area K ∩ P
satisfies both restrictions, and thus
identifies an admissible completion.

Here, Cautious Deferral restricts the directions that the completion <∗ can
take, forcing it to lie in the cone at the intersection between K and the pos-
itive cone P.

3That the representation of <∗ should be of the form α∗1 maxEu1 +α∗2 maxEu2 can be
deduced as a consequence of an aggregation theorem a là Harsanyi. Simply put, if it where
not the case, there should be A and B such that maxA Eui = maxB Eui for i = 1, 2 but
A �∗ B. But given the restrictions we assumed on the representation of <, the previous
equalities imply A ∼ B, which would necessarily lead to A ∼∗ B, a contradiction.

4



Case II:
Suppose Case I does not hold. Then if A ./ B, either maxA Eui ≤ maxB Eui
or maxB Eui ≤ maxA Eui for i = 1, 2. Notice that, since for every set A, the
set Ȧ =

⋂
i{b ∈ X | Eui(b) ≤ maxa∈A Eui(a)} must have the same image

under Φ as A, this implies that for every incomparable pair (A,B) the cor-
responding incomparable pair (Ȧ, Ḃ) satisfies either Ȧ ⊂ Ḃ or Ḃ ⊂ Ȧ.

Now assume that two incomparable sets (A,B) are indifferent under the
completion <∗. The lemma below shows that in our restricted environment,
and except for trivial situations, every completion admits one such pair:

Lemma 1. Let <∗ and each <i in the collection {<i}i∈I such that

<=
⋂
i∈I
<i

have a representation of the form (1.1), and let all corresponding measures
have support in some finite set of Bernoulli utilities. Then if ./ and � are
nonempty, there are A,B ∈ X such that A ./ B and A ∼∗ B.

Proof: Suppose the statement is false. Then for all A ∈ X, we have
that

{B ∈ X | B ∼∗ A} ⊆ {B ∈ X | B ∼ A} =
⋂
i∈I
{B ∈ X | B ∼i A}. (1.2)

Let α∗ and αi be the vectors in Rn corresponding to the representations of
<∗ and <i respectively. Then, letting A be such that Φ(A) = 0, line (1.2)
is equivalent to

{Φ(B) ∈ Φ[X] | α∗ · Φ(B) = 0} ⊆
⋂
i∈I
{Φ(B) ∈ Φ[X] | αi · Φ(B) = 0}.

Because � is nonempty, α∗ must be a non-zero vector. Thus, as long
as αi is different from zero, the sets {Φ(B) ∈ Φ[X] | α∗ · Φ(B) = 0} and
{Φ(B) ∈ Φ[X] | αi · Φ(B) = 0} are the intersection between Φ[X] and an
n−1 dimensional subspace of Rn. Since Φ[X] spans Rn, basic dimensionality
arguments imply that for every nontrivial <i we must have:

{Φ(B) ∈ Φ[X] | α∗ · Φ(B) = 0} = {Φ(B) ∈ Φ[X] | αi · Φ(B) = 0}.

This means that for each i ∈ I there is a λi ∈ R such that αi = λiα
∗.

Non-emptiness of � implies that some λi must be different from zero. If each
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λi is non-negative all relations <i agree, so ./ must be empty. Similarly if
each λi is non-positive. Finally, if some λ are strictly positive and some are
strictly negative, the relation < is the intersection of the preferences <+ and
<− induced by α∗ and −α∗. In this case, since A �+ B implies B �− A,
we cannot have nonempty �. �

W.l.o.g. we have Ȧ ⊂ Ḃ. Because under closed continuity incompara-
bility is open, there is an open neighborhood OB of B such that A ./ C
whenever C ∈ OB. Because Φ[X] spans R2 this implies that for every direc-
tion β, there is a small enough ε such that Φ(B) + εβ is included in Φ[OB].

In particular, setting β = −(α∗1, α
∗
2) we see that in any open neighbor-

hood of B we can find a set B1 that is incomparable to A and such that
B �∗ B1. Continuity of set inclusion in the Hausdorff topology implies we
can find a neighborhood small enough such that Ȧ ⊂ Ḃ implies Ȧ ⊂ Ḃ1.
But then Ȧ ./ Ḃ1 but Ȧ �∗ Ȧ ∪ Ḃ1 = Ḃ1, contradicting Cautious Deferral.
Figure 5 below illustrates the case:

maxEu1

maxEu2

Figure 5.

-The indifference curve induced
by <∗, must contain some set
B ./ A.

-The shaded open ball OB con-
tains only sets incomparable to
A.

-The set B1 is strictly worse than
A under <∗. At the same time
Ȧ ⊂ Ḃ1.(α ∗

1 , α ∗
2 )

B

B1

A ./ B

A ./ B

B < A

OB

A

As is clear from the picture, in this situation any proper completion is
inadmissible.

2. Counterexamples

Here we use the simple environment sketched above to provide counterex-
amples showing that Axioms 1 and 2 are necessary for our results. We do
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not provide a counterexample for Axiom 3 since in this case necessity is
quite immediate. We do instead show that if one relaxes the requirement
that the completion <∗ be proper, our result does not hold.

2.1. Counterexample 1: Continuity

Define a relation B in the following way: ABB if and only if V1(A) > V1(B)
and V2(A) > V2(B), where V1(A) = 2 maxA Eu1 − maxA Eu2 and V2(A) =
maxA Eu1 − 2 maxA Eu2 . Because V1 and V2 are real valued functions of the
form 1.1, B is transitive and satisfies Axiom 2. But for each i, the relation
“A preferred to B iff Vi(A) > Vi(B) ” is an open subset of X ×X. Hence,
also B is open, which violates Axiom 1. Figure 6a below shows the upper
and lower contour sets of B at the set A0 ∈ Φ−1(0).

maxEu1 maxEu1

maxEu2 maxEu2

B

B′

Figure 6a.

-The two dashed lines represent indif-
ference curves corresponding to V1 and
V2.

-The light grey and dark grey cones,
corresponding to upper and lower con-
tour sets of B, are open.

V1 V1

V2

A0 A0

Figure 6b.

-Sets incomparable to A0 that include
A0 are like B, so B D1 A.

-Sets incomparable to A0 and included
in A0 are like B′, so A D1 B′.

Now consider the relation D1 given by A D1 B if and only if V1(A) ≥
V1(B). This relation is open (and closed) continuous, complete, transitive,
and satisfies Axiom 2. Moreover if A B B then necessarily A B1 B, so D1

is a proper completion of B. Nevertheless it is non-monotonic. It remains
to show that it satisfies Cautious Deferral. To do so, take any set B such
that A0 ⊂ B. It follows that maxB Eui ≥ 0 for i = 1, 2. If B ./ A0, it
must be that either Vi(A0) = Vi(B) for some i = 1, 2 or Vi(A0) > Vi(B) and
Vj(A0) < Vj(B). Now let Φ(B) = (x1, x2) and remember that Vi(A0) = 0.
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If V2(B) = 0 then x1 = 2x2 which, with non-negativity of the xi’s means
that 2x1−x2 = 3x2 ≥ 0, which implies BD1A. If V1(B) = 0 then obviously
B D1 A. Of the remaining to cases, V2(A0) > V2(B) and V1(A0) < V1(B)
already means B D1 A0, while V1(A0) > V1(B) and V2(A0) < V2(B) cannot
hold, since the latter inequality implies x1 > 2x2 and forcefully, by non-
negativity of x2, also V1(B) ≥ 0. So B ./ A0 and A0 ⊆ B imply B D1 A0

as required. A symmetric argument applies to sets that are included in A0,
and the whole discussion can be applied to any point in Φ[X].

As can be seen in Figure 6b, out of all sets that are incomparable to A0,
all those that might contain A0 are D1 preferred to A0, and all those that
might be contained in A0 are D1 worse than A0. This can happen here be-
cause the proper completion of an open continuous relation can correspond
to one of the indifference curves that form the extreme rays of the upper
and lower contour sets. Thus the contradiction that arises in Case II of the
proof of Section 1 has no bite.

2.2. Counterexample 2: Proper Completion

We will follow a logic that is very close to the one presented for the first coun-
terexample. Let D be the relation given by ADB if and only if Vi(A) ≥ Vi(B)
for i = 1, 2, where the Vi’s are those defined in Counterexample 1. Now
D is closed continuous and thus it satisfies all our assumptions. At this
point, consider the relation D1 induced by V1. As we showed above, it satis-
fies Axioms 1-3 (because we are reducing the number of incomparable sets,
Cautious Deferral must be satisfied also here). But D1 is not a proper com-
pletion of D. In fact, consider set C such that Φ(C) = (−0.5,−1). We have
V2(C) > 0 since V2(C) = −0.5 + 2. On the other hand V1(B) = −1 + 1 = 0
so A0 ∼1 B. But since this implies CBA0, we have found a point in B that
is not in B1. Nevertheless V1 represents a complete extension of D since
obviously D ⊆ D1.

2.3. Counterexample 3: Independence

There are many ways in which the theorem might not go through if we
weaken Independence. Here we concentrate on one of them, mainly the fact
that when Independence is lost, local properties of the preferences need not
extend globally. In particular, one reason we obtain such a strong result is
that, under Independence, if there exists at least two menus which are in-
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comparable, then for almost every menu, we can find a nearby menu that is
incomparable to it (this is not necessarily true if the menu is at the bound-
ary of the domain, hence the “almost” qualifier).

We will thus provide an example in which this is not true anymore, and
show that in this case a completion that satisfies Cautious Deferral can be
be non-monotonic. To keep the intuition simple, we will relax Independence
to Indifference to Randomization (that is, maintain the convexity property
behind Independence but relax linearity). Since the exact domain of the
preferences is now important (so that we need to look at all points in the
space, not just at a representative one), it will be useful to identify the un-
derlying utilities.

We assume a space with three prizes, so 4 := 4({z1, z2, z3}). Our in-
complete relation < is given by the intersection of two relations represented
by V1(max(·) Eu,max(·) Ev) and V2(max(·) Eu,max(·) Ev), where u and v are

the EU functionals induced by Bernoulli utilities u = { 1√
3
,− 1

2
√

3
,− 1

2
√

3
} and

v = {− 1
2
√

3
,− 1

2
√

3
, 1√

3
}.

It is immediate to see that ( 1√
3
, 1√

3
) = Φ({(1, 0, 0), (0, 0, 1)}) ≥ Φ(A) for

all A ∈ X and that

(− 1

2
√

3
,− 1

2
√

3
) = Φ({(0, 1, 0)}) ≤ Φ(A)

for all A ∈ X. Finally

(
1√
3
,− 1

2
√

3
) = Φ({(1, 0, 0)}) = (max

A∈X
max
a∈A

Eu, min
B∈X

max
b∈B

Ev)

and

(− 1

2
√

3
,

1√
3

) = Φ({(0, 0, 1)}) = (min
A∈X

max
a∈A

Eu,max
B∈X

max
b∈B

Ev)

Thus as can be seen in Figure 7, the set Φ[X] will be a square of length√
3

2 , with the bottom left corner at (− 1
2
√

3
,− 1

2
√

3
).

We assume that V1 is defined by

V1(A) = −[(max
A

Eu −
√

3

4
)2 + (max

A
Ev −

√
3

4
)2]

Here the utility is the opposite of the euclidean distance (in Φu,v[4])
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from (
√

3
4 ,
√

3
4 ).

We will take V2 to be

V2 =

{
V1 if V1(A) > V1(A∗),

V1 + (V1 − V1(A∗))emaxEu+maxEv if V1(A) 6 V1(A∗).

As can be seen V2 is taken to be identical to V1, except for a region be-
low a given indifference curve corresponding to some menu A∗. Below such
level, V2 is distorted by (V1(A) − V1(A∗))emaxA U+maxA Ev . This distortion
is negative whenever V1(A) < V1(A∗), continuously converging to zero as
V1(A) → V1(A∗), and has the easily verified property that, whenever V1

is monotone in (Eu,Ev), so is V1 + (V1 − V1(A∗))emaxEu+maxEv . Letting
5
√

6
12 > V1(A∗) >

√
78

12 ensures that the indifference curves of V2 will differ
from those of V1 only in the lower left corner of the previous graph (the
indifference curve that touches the southern and western boundary of the

domain corresponds to V1(A) = 5
√

3
12 ). Figure 7 shows the indifference curves

of both functions, highlighting in dark grey the area where they differ:

Figure 7.

-Any completion will be non-
monotonic in the upper right corner
of Φ[X].

-The Φ image of the union of any
two incomparable sets will lie in
the dotted square in the lower left
corner.

− 1
2
√
3

1√
3

− 1
2
√
3

1√
3

A∗

(√
3
4 ,
√
3
4

)

Here the thicker indifference curve corresponds to V1(A∗), the red area
corresponds to the zone in which there will be indecisiveness and the dashed
lines are the indifference curves of V2. As can be noticed, any set correspond-
ing to max{Φ(A),Φ(B)} for two sets A,B that are incomparable is in an
area where both functions V1 and V2 are increasing with respect to (Eu,Ev),
and thus monotonic. This means that the Cautious Deferral Axiom does
not impose any additional restriction on the completion. Thus, it will be
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sufficient to set, for example, G = 0.5V1 + 0.5V2 to obtain a completion
satisfying all our requirements. Notice nevertheless that G coincides with
V1 outside of the red area and it is thus non monotonic in some parts of the
domain (e.g. in the upper right hand corner).

2.4. On Comparative Statics

In light of our result, a natural question that arises is whether a higher level
of indecisiveness will lead to a stronger desire for flexibility. Here we show
that the Cautious Deferral axiom is in fact too weak to allow us to perform
this kind of comparative statics.

To fix the language, we will follow DLR (Section 3.1, p. 909) and say
that <∗1 strictly desires more flexibility than <∗2 if (i) A ⊂ B and B �∗2 A
implies B �∗1 A; (ii) there is some A′ ⊂ B′ such that B′ �∗1 A′ and A′ <∗2 B

′.
We now show in the following counterexample that under the assump-

tions of our theorem, it is possible that <∗1 strictly desires more flexibility
than <∗2 even if <∗2 is more incomplete than <∗1. To see this point, let

V1(A) = 2 max
A

Eu1 −max
A

Eu2 , W1(A) = 2 max
A

Eu1 + max
A

Eu2

and

V2(A) = max
A

Eu1 − 2 max
A

Eu2 , W2(A) = max
A

Eu1 + 2 max
A

Eu2

and consider two decision makers, DM1 and DM2, with psychological pref-
erences <1 and <2 given respectively by A <1 B iff V1(A) ≥ V1(B) and
W1(A) ≥W1(B), and by A <2 B iff V2(A) ≥ V2(B) and W2(A) ≥W2(B).
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V∗1

V∗2A0

Figure 8a.

Upper and lower contour sets at A0

for <1 and <2, shown in light/dark
grey and dotted/vertical line patterns.

V1

W1W1

V2

W2

A0

B0

Figure 8b.

The two thick dark lines represent
the indifference curves through A0

induced by V ∗1 and V ∗2 .

maxEu1 maxEu1

maxEu2 maxEu2

Figure 8a shows the upper and lower contour sets induced by both re-
lations at menu A0 satisfying Φ(A0) = (0, 0). The upper contour set at
A0 under <1, highlighted in light grey, coincides with {B ∈ X | V1(B) ≥
V1(A0) and W1(B) ≥W1(A0)}. The lower contour set is highlighted in dark
grey. Upper and lower contour sets at A0 for <2 are highlighted with dotted
and vertical line patterns respectively.

As can be seen from the picture, at A0, the upper contour set induced
by <2 is included in the one induced by <1. Since, by Independence, these
sets are in a certain sense “translation invariant”4, this implies that DM2 is
more indecisive than DM1. An other way to say this is that at every set A,
the collection of sets incomparable to A under <2 includes the collection of
sets incomparable to A under <1.

Now let V ∗1 = 2 maxEu1 + 1
2 maxEu2 and V ∗2 = maxEu1 . Since V ∗1 =

3
4W1 + 1

4V1 and V ∗2 = 1
2W2 + 1

2V2, these functionals induce two relations
<∗1 and <∗2 that are (continuous and affine) proper completions of <1 and
<2, respectively. Moreover, since they are both monotone, the preference
structures (<1,<∗1) and (<2,<∗2) also satisfy Cautious Deferral.

Finally, notice that since B �∗2 A implies maxB Eu1 > maxA Eu1 by
monotonicity of the max operator, A ⊂ B and B �∗2 A implies B �∗1 A.
On the other hand, consider the pair (A0, B0) where Φ(B0) = (0, 1) and

4To clarify, consider Ki = {λ(Φ(B) − Φ(A)) ‖ λ ≥ 0 and B <i A}, the dominance
cone induced by <i. Then affinity of the Vi and Wi functionals, which is guaranteed
by Independence, ensures that the Φ image of the upper contour set of any A under <i

coincides with Φ(A) +Ki ∩ Φ[X].
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A0 ∈ Φ−1((0, 0)) as previously. Recall that for any set A we can define a set

Ȧ = {a ∈ 4 | Eui(a) ≤ max
A

Eui for i = 1, 2}

which will be indifferent to A under both relations. These sets have the
important property that Φ(Ȧ) ≤ Φ(Ḃ) if and only if Ȧ ⊆ Ḃ. Hence the sets
Ȧ0 and Ḃ0 will satisfy Ȧ0 ⊂ Ḃ0 and Ḃ0 �∗1 Ȧ0, but Ȧ0 ∼∗2 Ḃ0. Thus, while
DM2 is more indecisive than DM1, here DM1 strictly desires more flexibility
than DM2. Thus, more indecisiveness does not necessarily correlate with a
stronger preference for flexibility in our model. An illustration of the two
different completions is given in figure 8b.

3. Strong Cautious Deferral

The Cautious Deferral rule posits a very weak link between indecisiveness
and choice deferral, in two precise senses. On the one side one might not
strictly prefer to postpone when unable to compare two menus, as A∪B ∼ A
and A .̂/B is allowed. On the other we might have pairs A,B at which <
exhibits strict preference for flexibility even though A <̂B. In this section
we study the consequences of strengthening our definition in both directions,
which leads to the following:

Definition: A complete and rational preference < on X is a Strong Cau-
tious Deferral completion if there exists a rational preference <̂ on X such
that:

(C1 ) < is a proper completion of <̂.
(D2 ) A .̂/B if and only if A ∪B � A,B.

As condition D2 is obviously stronger than the Cautious Deferral rule, by
Proposition 1 in the paper only monotonic preferences < can be Strong
Cautious Deferral completions of non-trivially incomplete relations. We
present the additional implications of this definition below. Before doing
so,we need to introduce some notation. Let U∗ be the set of doubly normal-
ized Bernoulli utilities over Z, namely the set of functions u ∈ RZ such that∑

z∈Z u(z) = 0 and
∑

z∈Z u(z)2 = 1, endowed with the topology inherited
from the Euclidean space RZ . Let Eu(a) =

∑
z∈Z a(z)u(z). Then:

Proposition 1. Let < be a complete, and rational preference on X. Then
the following are equivalent:
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1) < is the Strong Cautious Deferral completion of some relation <̂ that
is incomplete.

2) < exhibits strict preference for flexibility at some pair A,B.

3) There is a nonempty, non-singleton closed set U ⊆ U∗ such that

A <̂B ⇐⇒ max
a∈A

Eu(a) ≥ max
b∈B

Eu(b) for all u ∈ U (3.1)

The above U is unique in the sense that if another nonempty, closed
set V ⊆ U∗ satisfies 3.1 then V = U . Notice this implies that <̂ is
uniquely identified.

The proof of this proposition is available from the authors upon request. The
intuition is that under Strong Cautious Deferral, as long as there is some
underlying incompleteness a) < must be monotone and b) the relation <̂
must coincide with the Krepsian dominance relation (see Section 5). Under
Independence the latter has a representation that can be identified using
the support of the measure associated to the DLR representation. We note
that Danan (2003b) had already provided a result along these lines.

4. Simple Cautious Deferral

Consider the following weakening of our definiton of Cautious Deferral com-
pletion:

Definition: A complete and rational preference < on X is a Simple Cau-
tious Deferral completion if there exists a rational preference <̂ on X such
that:

(C1 ) < is a proper completion of <̂.
(C2’ ) {p} .̂/A implies A ∪ {p} < {p} for all p ∈ 4 and A ∈ X

The new rule in C2’, simply requires that the agent does nto choose to com-
mit to a single option {p} when he is indecisive between p and A and is
allowed to postpone by choosing A ∪ {p}. Under some additional restric-
tions on the complete preference <, we can show that a similar result to
Proposition 1 in the paper also holds with this weaker definition. First, we
can prove the following claim:

Claim 1. Let < be a Simple Cautious Deferral completion on X. Then
as long as {p} � {q} for some p, q ∈ 4, either D < {c} for all c ∈ D and
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D ∈ X, or < and <̂ coincide over singleton sets.

Proof of Claim 1. In the following we denote, abusing notation, singletons
{p} with p. Let < be a Simple Cautious Deferral completion on X such that
p � q for some p, q ∈ 4. If < and <̂ do not coincide on singletons, it must
be that a .̂/ b for some a, b ∈ X. Suppose by contradiction that c � D for
some c ⊂ D. As < is non-trivial on singletons, we can assume w.l.o.g. that
a � b. Also, as always we can assume D is closed and convex. Now we can
replicate the construction of the Proposition 1 proof. We obtain

e =
1

2
c+

1

2
a

f =
1

2
c+

1

2
b

G =
1

2
D +

1

2
b

H =
1

2
c+

1

2
co({a, b}).

Replicatng the steps of the proof, we obtain either a set J such that f � J
but f ⊂ J and f .̂/ J , or in the alternative case a singleton k = αe+(1−α)f
contained in a set I = αH+(1−α)G for some α, such that k .̂/ I and k � I,
violating in either situation the Simple Cautious Deferral rule. �

As the following shows, when < has a finite subjective state representation,
we can then prove a modified version of Proposition 1 for the weaker Simple
Cautious Deferral:

Claim 2. Let < be a Simple Cautious Deferral completion on X that is
non-trivial on singletons and has a finite subjective state representation.
Then if {p}.̂/{q} for some p, q ∈ 4, the relation < must be monotonic.

Proof that Claim 1 → Claim 2. As we know, when < has a fite state
representation with n states, the immage of X under the map H : X → Rn
given by Φ(A) = (maxA u1(), ...,maxA un()) is a full dimensional convex sub-
set of Rn. Let p be such that Φ({p}) is in the interior of H[X].Then for any
(element wise) small enough vector ε in Rn, we must have Φ({p})+ε ∈ H[X].
So let εi > 0 for all i corresponding to negative states and εj ≤ 0 for all j
corresponding to positive states. If < is non- monotonic, it has at least one
negative state. Hence letting A be any set such that Φ(A) = Φ({p}) + ε, we
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get that Φ(A ∪ {p})i = max{Φ(A)i,Φ({p})i} = Φ({p})i for i corresponding
to positive states and Φ(A∪{p})j > Φ({p})j for j corresponding to negative
states, which implies that {p} � A ∪ {p}. �

5. On the Dominance relation of Kreps (1979)

Kreps Dominance Relation. Kreps considers a complete transitive pref-
erence over menus of a finite set, and assumes:

1) Monotonicity: A ⊆ B ⇒ B < A

2) Axiom (1.5) : A ∼ A ∪B → A ∪ C ∼ A ∪B ∪ C.

He then defines a subrelation D over menus given by A D B if A < A ∪ B.
Notice that D is reflexive, that by Monotonicity and (1.5) we have that D
is transitive and moreover < is a proper completion of D. Also notice the
subrelation D can be defined by asking that

a) D ⊆<, B ⊆�.

b) A ./ B ⇔ A ≺ A ∪B � B.

This definition highlights the nature of the D relation: assuming that one
prefers flexibility only when unsure about the comparison between menus A
and B, D expresses the part of your preference < that you are sure about.
So another way of seeing the Kreps axioms is as ensuring that < can be seen
as a completion of D, where D is the underlying ”sure” preference over sets
and the proper completion < dubs A∪B strictly better than both A and B
only when D is uncertain about their value.

A similar argument can be made in the menus of lotteries environment, for
a preference satisfying Monotonicity and Independence instead. As it can
be shown that Monotonicity and Independence imply assumption (1.5), the
usual construction for the dominance relation will deliver a reflexive and
transitive relation D whose completion is <. Moreover D now satisfies In-
dependence. This relation can also be uniquely identified using a) and b) as
before.

Dropping Monotonicity. Now suppose we wish to drop Monotonicity, but
keep Independence. Can we still obtain an underlying relation expressing
those comparisons the DM is ”sure of” such that any strict preference for
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flexiibility coincides with a pair where D is not sure? Now we cannot define
it using A < A ∪ B, since, as we are not requiring monotonicity, we might
very well have a case in which A � A∪B. But we can still go the other way
around: we can ask if there is a subrelation D of < satisfying Independence
such that a) and b) holds. Our Proposition 1 says this can be done iff <
is Monotonic. In fact our result is stronger than that. It holds even if we
substitute b) with

A ./ B ⇒ A 4 A ∪B < B

So even if we allow our subrelation to only describe some of the comparisons
I am sure of, there is no escape from Monotonicity.
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