Revealing temptation through menu choice: field evidence

Séverine Toussaert

February 10, 2019

- 1. Commitment demand is a key behavioral implication of economic theories of temptation.
 - See Laibson (1997), Gul and Pesendorfer (2001), Dekel, Lipman and Rustichini (2009), Fudenberg and Levine (2006, 2012)
- 2. Implication widely tested both in the lab and in the field
 - Lab: Augenblick et al. (2015), Houser et al. (2018)
 - Field: Ashraf et al. (2006), Giné et al. (2010), Royer et al. (2015), Kaur et al. (2015)

▶ What is in a typical dataset?

- ▶ What is in a typical dataset?
 - \triangleright 2 options a and b, where b construed as the temptation.
 - ▶ DM asked to choose between $\{a\}$ and $\{a,b\}$.
 - ▶ DM who demands commitment by choosing $\{a\}$ reveals to have a self-control problem with b.

- ▶ What is in a typical dataset?
 - \triangleright 2 options a and b, where b construed as the temptation.
 - ▶ DM asked to choose between $\{a\}$ and $\{a,b\}$.
 - ▶ DM who demands commitment by choosing $\{a\}$ reveals to have a self-control problem with b.
- ▶ But it is not always clear what the source of temptation is: why not offering $\{b\}$?
 - ▶ Ameriks et al. (2007): problem of underconsumption, especially towards the end of the life cycle.

- ▶ What is in a typical dataset?
 - \triangleright 2 options a and b, where b construed as the temptation.
 - ▶ DM asked to choose between $\{a\}$ and $\{a,b\}$.
 - ▶ DM who demands commitment by choosing $\{a\}$ reveals to have a self-control problem with b.
- ▶ But it is not always clear what the source of temptation is: why not offering $\{b\}$?
 - ▶ Ameriks et al. (2007): problem of underconsumption, especially towards the end of the life cycle.

- ▶ Little evidence of commitment demand driven by temptation:
 - ▶ Low take-up rates in range 10%-35%.
- ▶ Why this low demand?
 - ▶ One possible reason: commitment opportunities are too limited.
 - ▶ Maybe $\{a,b\} \succ \{a\}, \{b\}$ but $\{a,b\} \succ \{a,b,c\}$ for some option c
- ► Studying temptation requires a richer language:
 - ▶ Approach here: study ≥ over a fairly rich set of "menus"
 - Using information on the entire ordering, develop a language of temptation.
 - ► Test how much can be learned by using this language.

Using menu choice to reveal temptation (1)

- ▶ In Toussaert (2018), I conduct a lab experiment in which:
 - 1. I elicit preferences over a set of menus $\{\{a\},\{b\},\{a,b\}\}$
 - 2. Then observe a choice from $\{a,b\}$ for some people
 - 3. Build a typology of agents based on this data
 - 4. Find about 25% of "self-control types" who:
 - (i) express $\{a\} \succ \{a,b\} \succ \{b\}$ (ii) choose a from $\{a,b\}$
- ▶ Here: use menu choice to study "real" temptations in the field.
- ▶ Do not observe choices from menus (Stage 2).
- ▶ Instead, focus on Stage 1: enrich the set of menus and explore further the notion of "type".

Using menu choice to reveal temptation (2)

- Conduct a field study with a selected population: participants in a weight loss challenge.
- ▶ Study temptation to eat unhealthy by eliciting preferences over lunch reimbursement options differing in their food coverage.
- ▶ Using data on the entire ordering, develop revealed preference measures of temptation and validate them with survey data.
- ► Test whether those measures can predict self-control problems during the challenge:
 - ▶ Demand for and default on a goal setting contract
 - Likelihood of completing (a) the challenge and (b) the study
 - Likelihood of claiming reimbursement

What we are (not) going to learn

- ▶ What I will NOT show:
 - ▶ Restricting choice sets helps people lose weight.
 - ▶ Restricting choice sets helps people eat better.
- ▶ What I am hoping to demonstrate:
 - Language of menus rich enough to capture multiple facets of temptation.
 - ▶ Can talk about *source*, *strength* and *structure* of temptation.
 - ▶ Can predict self-control problems in at least related domains
 - \blacktriangleright e.g., revealed temptation to eat unhealthy = + 10-35 ppts more likely to default on contract.

Plan of the talk

- 1. Description of the dataset and experimental design
- 2. Revealed temptation in the reimbursement program
- 3. Survey validation of revealed preference measures
- 4. Predictive power of revealed preference measures

The subject pool

- ▶ Participants in a weight loss challenge conducted at NYU
- ▶ Data concerns the 2014 edition (4th edition)
- ▶ Only faculty and staff members eligible to participate
- ▶ 113 enrolled in study (out of 193)
- ▶ 35 y.o. and 79% female
- ▶ 31% of returning participants
- Large majority overweight:
 - ▶ Mean weight of 204 lbs (male) and 172 (female)
 - ▶ US average: 196 lbs (male) and 166 lbs (female)
- ► Average weight loss goal of 14.4 lbs

Rules of the challenge

- ▶ 8-week challenge (March April 2014)
- ▶ In the spirit of the "Biggest Loser" TV show: winner is the one who loses highest % of body mass over the challenge.
- ▶ Monitoring: 4 weigh-ins, bi-monthly (March 4th, March 25th, April 15th, April 29th)
- ➤ Small prizes for losing highest number of pounds between 2 weigh-ins.
- Extra support:
 - ► Free gym pass for the month of March (private gym)
 - ▶ Four fitness and nutrition classes organized by NYU

Structure of the study and timeline

- ▶ Participants recruited at first weigh-in for study on improving health through exercise and nutrition.
- ▶ \$20 gift card for completing a two-part online study.

Online Survey	Completion Period	Survey Content
Survey 1 $N = 113$	March 4th through March 11th, 2014	Part 1: Basic socio-demographics Questions about participation Part 2: Goal setting contract Part 3: Reimbursement program
Survey 2 $N = 87$	April 29th through May 6th, 2014	Feedback questions about challenge and study Intertemporal choice tasks Self-control measures of Ameriks et al. (2007)

Goal setting contract

- ▶ Offer commitment contract to achieve self-set attendance goals.
- ▶ Participants could commit to goals in 1, 2 or 3 categories:
 - ► Gym visits (over one month)
 - Follow-up weigh-ins (out of 3)
 - ► Wellness events (out of 4)
- ▶ Lost their study payment (\$20) for not achieving them.
- ► Free-form entry initially regressions will include dummy for completion date.

Description of the reimbursement program (1)

- ▶ I elicit participants' temptation to eat unhealthy by studying their preferred coverage in a lunch reimbursement program.
- Lunch reimbursement program over one month:
 - ▶ 10% of participants drawn at random at the end of the challenge.
 - ▶ Up to \$300 reimbursed for meals taken in April.
 - ▶ Had to bring their receipts to be reimbursed.
- ► Three food categories:
 - ightharpoonup G =salads, soups, fruits, yogurts + water
 - ightharpoonup O = hot and cold sandwiches, cereal bars + juice
 - ightharpoonup R =burgers, pizza, fried foods, pastries + soda

Description of the reimbursement program (2)

▶ Participants asked to rank 7 reimbursements options:

$$\mathcal{M} := \{G, O, R, GO, GR, OR, GOR\}$$

- ▶ Elicitation of weak order \succeq on \mathcal{M} :
 - ▶ Participants assigned a rank number 1-7 to each option.
 - Could assign the same rank to multiple options to allow for indifferences.
- ▶ Incentive compatible elicitation procedure:
 - Probabilistic implementation with higher odds of receiving an option ranked higher.
 - ► Indifferences made easier to report.
 - ▶ Learned selected option after completing Survey 1.

Description of the reimbursement program (3)

- ▶ Participants asked to rate each food item on a 1-7 scale:
 - ▶ Health value (Survey 1, N = 113)
 - ▶ Temptation value (Survey 1, N = 113)
- ▶ For each food item, also asked to evaluate on 0-100 scale:
 - ightharpoonup Actual consumption (Survey 1, N = 113)
 - ldeal "should" consumption (Survey 2, N = 87)
 - ▶ Unrestricted "want" consumption (Survey 2, N = 87)

Summary of dataset

For each participant, observe:

- ▶ Ranking \succeq of options in $\mathcal{M} := \{G, O, R, GO, GR, OR, GOR\}$
- ▶ Subjective ratings of food items and consumption (N = 87)
- ▶ Decision to enter goal setting contract
- ▶ Attendance of weigh-ins and wellness events
- ► Gym attendance data from two sources:
 - ▶ Electronic records from badge scans g_1 (N = 69)
 - Self-reports g_2 (N = 83)
 - Final measure $G = \min(g_1, g_2)$ (N = 112)
- ▶ Whether returned receipts for reimbursement

Revealed Temptation: Theory (1)

- ► A standard DM should weakly prefer GOR.
- ▶ In contrast, a DM who is tempted by a food category may prefer to eliminate it from the coverage.
- ▶ Idea of using menu choice to model temptation first formalized by Gul and Pesendorfer (2001) through Set Betweenness axiom

$$M \succeq M'$$
 implies $M \succeq M \cup M' \succeq M'$

▶ Assume $G \succ R$. Three interesting cases allowed by the model:

$$(STD) \qquad G \sim GR \succ R$$

$$(SC) \qquad G \succ GR \succ R$$

$$(NSC)$$
 $G \succ GR \sim R$

Revealed Temptation: Theory (2)

- ightharpoonup Dekel, Lipman and Rustichini (2009) argue that SB is too restrictive.
- ▶ Example: DM with $G \succ GO \succ GR \succ GOR$
- ▶ Interpretation 1: Stochastic temptation
- \triangleright Allowed if SB relaxed to Weak Set Betweenness (WSB)

If
$$\{x\} \succeq \{y\}$$
 for all $x \in M, y \in M'$ then $M \succeq M \cup M' \succeq M'$

▶ Representation

$$V(M) = \sum_{v \in V} p(v) \ \{ \max_{x \in M} [u(x) + v(x)] - \max_{y \in M} v(y) \}$$

- Self-control cost $c(x, M) = \max_{y \in M} v(y) v(x)$ with prob p(v)
- GP 2001 case: |V| = 1

Revealed Temptation: Theory (3)

- ▶ Example: DM with $G \succ GO \succ GR \succ GOR$
- ▶ Interpretation 2: Cumulative temptation
- ightharpoonup Allowed if SB relaxed to Positive Set Betweenness (PSB)

$$M \succeq M'$$
 implies $M \succeq M \cup M'$

► Representation

$$V(M) = \max_{x \in M} [u(x) + \sum_{j \in J} v_j(x)] - \sum_{j \in J} \max_{y \in M} v_j(y)$$

- \blacktriangleright \neq self-control cost for temptation $j, c_j(x, M) = \max_{y \in M} v_j(y) v_j(x)$
- ▶ GP 2001 case: |J| = 1

Revealed Temptation: Theory (4)

- ▶ The two models are non-nested, although one needs choices from menus to fully distinguish them.
- ▶ How well do they rationalize preferences in my dataset?
- ► How much can we separate them by solely relying on menu choice data?
- ▶ Too permissive? Or is Strict Set Betweenness too restrictive?

Revealed Temptation: Measurement (1)

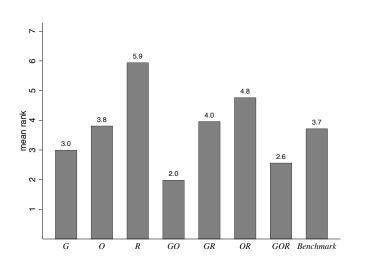
Construct revealed preference measures of temptation to study source, strength and structure of temptation.

- ▶ source: What options do people eliminate from their choice set?
- ▶ strength: How systematically do they eliminate such options?
- structure: What temptation model is most consistent with their commitment choices?

Revealed Temptation: Measurement (2)

Test for the presence of temptation by looking at:

- ▶ The top choice: preference for a restricted coverage?
- ▶ Pairwise comparisons between 2 nested options:
 - ightharpoonup Global Temptation index for G, O and R


$$GT_{-R} = \sum_{\mathcal{M}_R} 1_{\{M \setminus \{R\} \succ M\}}$$
 where $\mathcal{M}_R \in \{GR, OR, GOR\}$

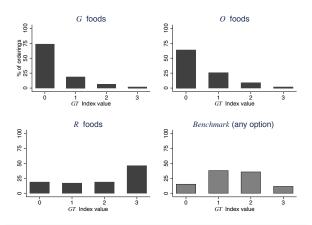
- ▶ R is globally tempting if $GT_{-R} = 3$.
- ▶ Pairwise comparisons of non-nested options to test Set Betweenness and its relaxations.

Revealed Temptation: Findings

- ▶ 82.3% of strict orderings
- ▶ Will contrast findings with benchmark:
 - ▶ 1,000 random permutations of ranks for each individual
 - ▶ Allows to preserve the distribution of indifferences

Revealed Temptation: Mean rank

Revealed Temptation: Top choices

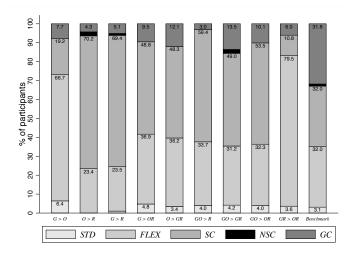

Table: Distribution of top choices

Top option(s)	Actual sample	Benchmark	<i>p</i> -value
	% (N)	%	
Option G	15.0 (17)	12.3	0.388
Option GO	32.7(37)	12.3	< 0.001
Option GOR	31.9(36)	12.3	< 0.001
Other option	6.2 (7)	48.9	< 0.001
No unique top	14.2 (16)	14.2	1.000
Total	100 (113)	100.0	100.0

Notes: "No unique top" if assigned rank 1 to several options; p-values from binomial tests that the observed frequency is equal to the benchmark frequency.

Revealed Temptation: Global Temptation Index

Figure: Temptation value of G, O and R foods

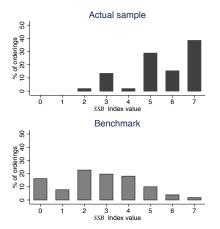

Notes: For each category $m \in \{G, O, R\}$, "Index value" refers to the value of the Global Temptation Index $GT_{-m} = \sum_{\mathcal{M}_m} \mathbbm{1}_{\{M \setminus \{m\} \succ M\}} \in \{0, 1, 2, 3\}.$

Revealed Temptation: Structure of Commitment (1)

- ▶ Standard (STD): $M \succ M'$ implies $M \sim M \cup M' \succ M'$
- ▶ Flexibility (FLEX): $M \succ M'$ implies $M \cup M' \succ M \succ M'$
- ▶ No Self-Control (NSC): $M \succ M'$ implies $M \succ M \cup M' \sim M'$
- ▶ Self-Control (SC): $M \succ M^{'}$ implies $M \succ M \cup M' \succ M'$
- ▶ Global Commitment (GC): $M \succ M^{'}$ implies $M \succ M' \succ M \cup M'$

Revealed Temptation: Structure of Commitment (2)

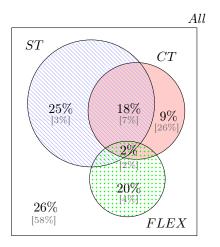
Figure: Distribution of orderings for most popular comparisons


Revealed Temptation: Structure of Commitment (3)

Comparing any two non-nested menus M and M' such that $M \succ M'$:

- 1. If $R \in M' M \Rightarrow \text{mostly } SC$
 - ightharpoonup e.g., (G,R) or (GO,R)
- 2. If $R \notin M \cup M'$ or $R \in M \cap M' \Rightarrow \text{mostly } FLEX$
 - ightharpoonup e.g., (G, O) or (GR, OR)

Revealed Temptation: Structure of Commitment (4)


Figure: Strict Set Betweenness when R globally tempting

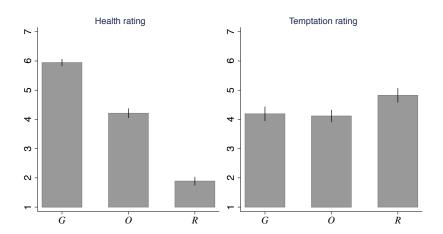
Notes: Index $SSB_{-R} = \sum_{\mathcal{P}_R} \mathbbm{1}_{\{M \succ M \cup M' \succ M'\}} \in \{0, 1, ..., 7\}$ where $\mathcal{P}_R = \{(G, R), (O, R), (G, OR), (GO, R), (O, GR), (GO, GR), (GO, OR)\}.$

Revealed Temptation: Structure of Commitment (5)

Figure: % classifiable with at most one violation

Notes: Weak Set Betweenness (WSB): Stochastic Temptation; Positive Set Betweenness (PSB): Cumulative Temptation

Revealed Temptation: Summary


- ▶ Substantial demand for restricted coverage: only 39% of respondents assigned rank 1 to *GOR*.
- ightharpoonup R is a robust temptation, but not O.
- ightharpoonup Temptation by R takes the form of SSB.
- ▶ About 45% of respondents have temptation preferences à la DLR 2009 (WSB and PSB).

Survey validation of temptation measures (1)

- ▶ How well do those measures match respondents' perceptions of the food items?
- ightharpoonup Are those who prefer to remove R from the coverage really tempted?

Survey validation of temptation measures (2)

Figure: Mean health and temptation scores by food category

Survey validation of temptation measures (3)

Figure: Temptation scores by food category and GT_{-R} score

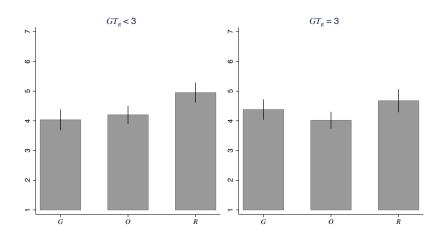
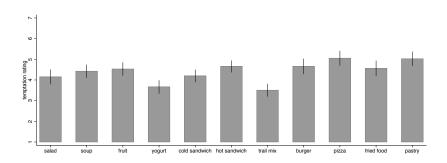
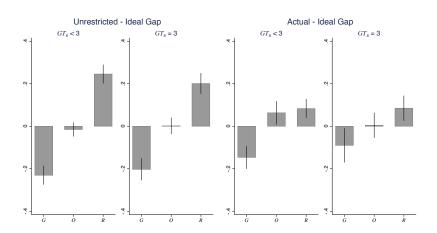



Figure: Temptation rating by food item

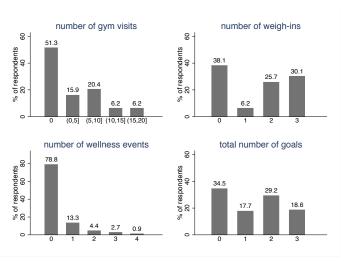

Survey validation of temptation measures (4)

- ▶ Asked 3 questions about food consumption (0-100 scale):
 - ▶ Actual: "Since the beginning of the year, how often did you have each of the following options for lunch?"
 - ▶ Ideal: "Ideally, indicate how frequently you think you should consume each of the following food items"
 - ▶ Unrestricted: "Suppose you could eat anything you want without gaining a single pound and without any consequences for your health. How frequently would you eat each of the following food items?"
- Construct indices of relative consumption frequency: $s_j(G) = \frac{f_j(G)}{f_j(G) + f_j(O) + f_j(R)}$ for $j \in \{A, I, T\}$.
- ► Actual Ideal gap = $s_A s_I$ (in GP terms, $s_{u+v} s_u$)
- ▶ Unrestricted Ideal gap = $s_U s_I$ (in GP terms, $s_v s_u$)

Survey validation of temptation measures (6)

Figure: Consumption gaps by value of the GT_{-R} score

Survey validation of temptation measures: Summary


- ▶ Subjective ratings well aligned with commitment preference:
 - \triangleright Clear ordering of G, O and R on health dimension.
 - \triangleright R more tempting than G and O; O not more tempting than G.
- \triangleright Temptingness of R conflicts with consumption goals:
 - ightharpoonup Unrestricted Ideal Gap is large and positive for R.
 - ► Actual Ideal Gap generally smaller, consistent with self-restraint.

Predictive power of temptation measures

- ▶ Built different types of menu choice measures:
 - 1. Source: Top choice (G top, GO top, GOR top, Other)
 - 2. Strength: GT_{-R} index
 - 3. Structure: SSB_{-R} index
- ▶ Commitment appears to reflect temptation concerns.
- ▶ Do those measures predict other behaviors likely symptomatic of self-control problems?
 - 1. Goal setting contract take-up and success
 - 2. Completion of challenge and study
 - 3. Reimbursement claims

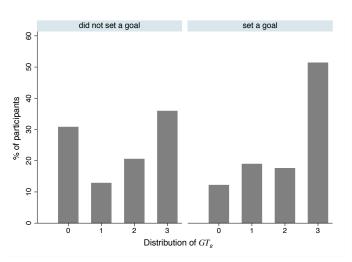
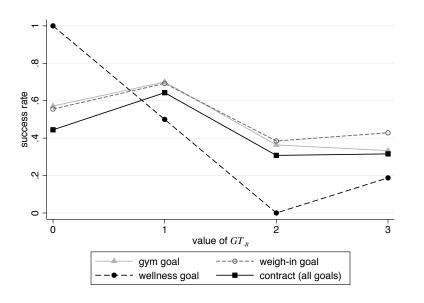

Goal setting (1)

Figure: Distribution of goals

Goal setting (2)

Figure: Revealed temptation and goal setting


Determinants of contract take-up

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
G top	0.031	0.049	(9)	(4)	(0)	(0)	(1)	(0)
G top	(0.136)	(0.136)						
aa.		0.232**						
GO top	0.191*							
Oil i	(0.109)	(0.107)						
Other top	0.057	0.039						
	(0.124)	(0.121)						
GT_{-R}			0.075**	0.099***	0.103***			
16			(0.037)	(0.037)	(0.038)			
GT_{-G}			()	()	0.034			
0					(0.070)			
GT_{-O}					-0.014			
					(0.070)			
					()			
SSB_{-R}						0.026	0.038**	0.050***
						(0.017)	(0.017)	(0.018)
SSB_{-G}								-0.034
								(0.041)
SSB_{-O}								-0.060
								(0.044)
female		-0.094		-0.126	-0.122		-0.119	-0.153
		(0.106)		(0.105)	(0.107)		(0.107)	(0.109)
single		0.051		0.087	0.089		0.079	0.071
		(0.091)		(0.088)	(0.089)		(0.089)	(0.089)
age		0.007		0.008*	0.007		0.008*	0.009**
		(0.005)		(0.005)	(0.005)		(0.005)	(0.005)
years of educ		-0.092***		-0.097***	-0.098***		-0.097***	-0.100***
		(0.029)		(0.029)	(0.029)		(0.029)	(0.029)
prior participant		-0.092		-0.073	-0.071		-0.082	-0.089
		(0.091)		(0.089)	(0.090)		(0.090)	(0.090)
weight loss goal		0.005		0.004	0.005		0.004	0.003
		(0.004)		(0.004)	(0.004)		(0.004)	(0.004)
goal confidence		0.421**		0.385**	0.386*		0.417**	0.421**
		(0.197)		(0.193)	(0.195)		(0.194)	(0.193)
(goal confidence) ²		-0.048**		-0.045**	-0.046**		-0.048**	-0.048**
		(0.020)		(0.020)	(0.020)		(0.020)	(0.020)
diets attempted		0.006		0.005	0.005		0.006	0.006
		(0.009)		(0.009)	(0.009)		(0.009)	(0.009)
Day 1 decision	-0.252***	-0.213**	-0.270***	-0.232***	-0.230**	-0.259***	-0.215**	-0.193**
Day I accision	(0.093)	(0.088)	(0.091)	(0.085)	(0.088)	(0.092)	(0.087)	(0.088)
N	113	113	113	113	113	113	113	113
adj. R^2	0.069	0.184	0.092	0.213	0.199	0.078	0.196	0.201

Goal success

- ▶ High rate of contract default: 60.3% (44/73)
- ► Success rates by goal category:
 - Exercise goal: 46.3% (25/54)
 - ▶ Weight loss goal: 48.6% (34/70)
 - ▶ Wellness goal: 20.8% (5/24)
- ▶ But goal setters have higher attendance overall:
 - Gym visits: 7.5 vs. 4.5, p = 0.017
 - Weigh-ins: 1.6 vs 1.0 (out of 3), p = 0.005
 - ▶ Wellness events: 38% vs. 6% attend at least one (p < 0.001)

Success rates by value of GT_{-R}

Determinants of goal success

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
G top	-0.341**	-0.353***						
	(0.143)	(0.130)						
$GO \ top$	-0.165	-0.243*						
	(0.135)	(0.133)						
Other top	-0.154	-0.112						
	(0.149)	(0.129)						
GT_{-R}			-0.098**	-0.120**	-0.116**			
GI_{-R}			(0.048)	(0.050)	(0.050)			
GT_{-G}			(0.048)	(0.030)	0.025			
GI_{-G}					(0.080)			
GT_{-O}					-0.044			
GI_{-O}					(0.093)			
					(0:093)			
SSB_{-R}						-0.029	-0.036*	-0.059**
						(0.019)	(0.018)	(0.022)
SSB_{-G}								0.038
								(0.046)
SSB_{-O}								0.111
								(0.083)
female		-0.038		-0.005	-0.007		-0.000	0.044
Jemaie		(0.104)		(0.112)	(0.113)		(0.121)	(0.124)
single		0.054		0.042	0.042		0.067	0.079
		(0.100)		(0.098)	(0.100)		(0.097)	(0.100)
age		-0.005		-0.008*	-0.007		-0.009*	-0.010**
		(0.005)		(0.005)	(0.005)		(0.005)	(0.004)
years of educ		0.036		0.048	0.045		0.034	0.053*
,		(0.031)		(0.031)	(0.033)		(0.030)	(0.030)
prior participant		0.196*		0.178*	0.179*		0.177*	0.213**
		(0.105)		(0.103)	(0.103)		(0.105)	(0.105)
weight loss goal		-0.004		-0.003	-0.003		-0.002	-0.002
		(0.003)		(0.003)	(0.003)		(0.003)	(0.003)
goal confidence		0.053		0.050	0.049		0.041	0.014
		(0.278)		(0.274)	(0.274)		(0.256)	(0.266)
(goal confidence) ²		-0.002		-0.001	-0.001		-0.002	0.001
		(0.029)		(0.029)	(0.029)		(0.027)	(0.028)
diets attempted		-0.027**		-0.026**	-0.025**		-0.025**	-0.028**
		(0.011)		(0.011)	(0.010)		(0.011)	(0.012)
Day 1 decision	0.165	0.180	0.185	0.204*	0.211*	0.162	0.176	0.145
	(0.125)	(0.113)	(0.127)	(0.115)	(0.116)	(0.127)	(0.118)	(0.130)
	. ,			. ,		. ,		
N	149	149	149	149	149	149	149	149
adj. R^2	0.090	0.147	0.103	0.162	0.151	0.083	0.138	0.153

Link between menu preferences and other outcomes

Those tempted by R foods are also:

- Less likely to complete the challenge.
- Less likely to respond to Survey 2.
- Less likely to return receipts for reimbursement.

Weigh-in attendance over time

Figure: Attendance of the weigh-ins by value of the GT_{-R} index

Survey 2 completion

- ▶ 87 of the 113 study participants completed Survey 2.
- ▶ Attrition clearly non random as non respondents were:
 - ▶ more likely to have set goals (85% vs. 60%, p = 0.019)
 - ▶ less likely to attend 3 follow-up weigh-ins (p < 0.05 for all 3)
 - less likely to attend the gym (2.7 vs. 6.7 visits, p < 0.01)
- ▶ But not necessarily less motivated ex ante: similar intentions to attend gym, weigh-ins and wellness events.
- ▶ Menu preferences predict likelihood of responding, controlling for goal setting and attendance of last weigh-in:
 - ▶ Ranking G at top: ≈ 20 pp less likely to respond
 - Extra point on GT_{-R} score = \approx 7pp less likely to respond

Claiming reimbursement

- ▶ Only 17% (19) submitted receipts
- ► Reasons:
 - ▶ Lost receipts, forgot to ask, could not get itemized: 41%
 - ▶ Not worth effort given low chance of winning: 34%
 - ▶ Usually brings own lunch: 26%
 - ▶ Option did not cover foods ordered: 10%
- ► Correlated with showing up to last weigh-in and option assigned.
- Menu preferences predict likelihood of responding, controlling for option assigned and attendance of last weigh-in:
 - ▶ Ranking GO at top: ≈ 20 pp less likely to submit receipts
 - Extra point on GT_{-R} score = \approx 6-7pp less likely to submit receipts

Conclusion

- ► Find strong evidence of commitment demand driven by temptation as measured through menu preferences.
- ▶ Revealed preference approach, structural, more agnostic and comprehensive than in previous studies.
- ▶ Related to take-up and default on goal setting contract.
- ▶ Menu preference measures of temptation offer a promising venue to measure self-control problems.

Discussion (1)

To what extent does menu choice "reveal" temptation? Identifying temptation with preference for commitment might be

- ▶ Too weak i.e., there can be commitment without temptation:
 - ▶ Distribution of GT_{-R} almost unchanged with tighter definition.
 - ▶ Most findings remain in subsample with $G, O \succ R$.
 - ▶ Restriction on singletons might be too strict. Example: $GO \succ GOR \succ R \succ G$.
- ▶ Too strong i.e., there can be temptation without commitment:
 - ▶ Commitment requires sophistication from tempted DM.
 - ▶ But fairly sophisticated subjects: entered weight loss challenge.
 - ► Full naiveté unlikely when it comes to food cravings.

Discussion (2)

- ▶ Awareness of self-control problems on the extensive margin.
- ▶ But misunderstanding of the intensive margin of self-control:
 - ightharpoonup Those who preferred to avoid R were more likely to take up the goal setting contract.
 - ▶ But they were also more likely to fail to reach their goals.
- ▶ Correlation of commitment demand across domains:
 - ▶ (Beliefs about) self-control may have some domain generality.
 - ▶ Other candidate explanations: signaling/experimenter demand.
- ▶ Subject pool and choice environment quite specific: more research needed to test robustness of findings to other settings.