Costly Signalling of Intentions in the Trust Game

Severine Toussaert (NYU)

2013 North-American ESA Conference

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Intentions in the Trust Game (1)

- Trust is an essential element of social capital which emerges out of an implicit contract between two partners A and B.
- For trust to be enforced:
 - 1. B must perceive A's action as trusting.
 - 2. B must be willing to reciprocate perceived trust.
 - 3. A must believe in 1 and 2.
- Thus trust has a signalling component: it reflects A's belief that B will reciprocate.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

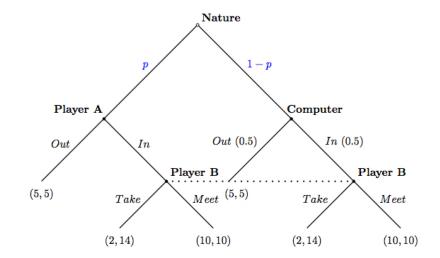
Trustworthiness emerges as a response to this signal.

Intentions in the Trust Game (2)

- Many recent papers report evidence that B cares about A's intentions in games involving cooperation.
- For instance, B cooperates less if a random device chooses for A, if A's decision involves no risk or if A was forced to trust:
 - Random device approach: Falk, Fehr and Fischbacher (2008), Stanca (2010), Rand, Fudenberg and Dreber (2013)
 - Voluntary versus Involuntary Trust Game: McCabe, Rigdon and Smith (2003)
- Most papers focus on B's behavior.
- Question: Does A understand the strategic implications?

Intentions in the trust game (3)

This study takes one step further: studies how B's reciprocity motives may feed back into A's incentives to trust.


- 1. Is A less likely to trust if the signal of trust is more noisy?
- 2. Would A be willing to pay to signal trust?

To address this question, I **introduce uncertainty** in a standard binary trust game:

 A's decision is implemented only with some noise; this is common knowledge.

• The noise weakens A's signal of trust.

A binary Trust Game with noise

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Game Analysis: Beliefs

- Let σ_A ∈ {In, Out} and σ_B ∈ {Meet, Take} be the strategies of A and B.
- Assume that the computer plays a mixed strategy $\sigma_C = (\frac{1}{2}, \frac{1}{2})$.
- Let σ_A^* be player B's belief that A chose *In*. \Rightarrow B's first-order belief (10B)
- Let σ_A^{**} be player A's belief about B's first-order belief.
 ⇒ A's second-order belief (20B)
- Define B's posterior belief after observing In:

$$\mu_B(\sigma_A^*) := \frac{p\sigma_A^*}{p\sigma_A^* + \frac{1}{2}(1-p)}$$

Game Analysis: Preferences

- Let m_i denote the material payoff of player i.
- Assume that A is a standard expected utility maximizer with preferences: u_A(σ) = E_A[m_A(σ)].
- B is a mixed type with preferences given by:

$$u_B(\sigma, \sigma_A^*) = m_B(\sigma) + [\alpha + \theta \mu_B(\sigma_A^*)]m_A(\sigma)$$

ション ふゆ く は マ く ほ マ く し マ

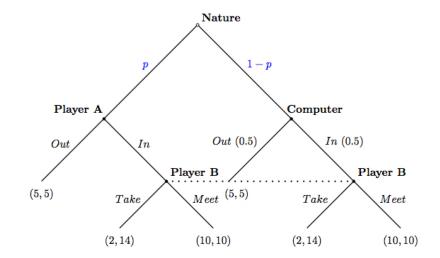
- α > 0 captures B's pure altruism.
- $\theta > 0$ captures B's sensitivity to A's intentions.

Game Analysis: Optimal strategies

Assume In is realized. Then B will choose Meet if and only if:

 $10 + 10[\alpha + \theta\mu_B(\sigma_A^*)] \ge 14 + 2[\alpha + \theta\mu_B(\sigma_A^*)]$

$$\Leftrightarrow \frac{p\sigma_A^*}{p\sigma_A^* + \frac{1}{2}(1-p)} \geq \frac{1-2\alpha}{2\theta}$$


- If α > ¹/₂, B chooses Meet irrespective of his 10B σ^{*}_A and therefore A chooses In.
- If α + θ < ¹/₂, B chooses Take irrespective of his 10B σ^{*}_A and thus A chooses Out.
- If α < ¹/₂ and θ + α ≥ ¹/₂, then B's (A's) propensity to choose Meet (In) increases with p and σ^{*}_A (σ^{**}_A).

Design and Treatments

Two main treatment variables:

- ▶ Within subjects: vary $p \in \{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}.$
- Between subjects: vary the feedback received by B.
- 3 treatments:
 - II: Incomplete Information with noise: B makes a choice without knowing A's decision.
 - CI: Complete Information with noise: B is informed of A's decision before making a choice: σ^{*}_A ∈ {0,1}
 - SIG: Signal with noise: Before B makes a choice, A can pay \$1 to inform B of his/her decision.

A binary Trust Game with noise

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Design and Treatments

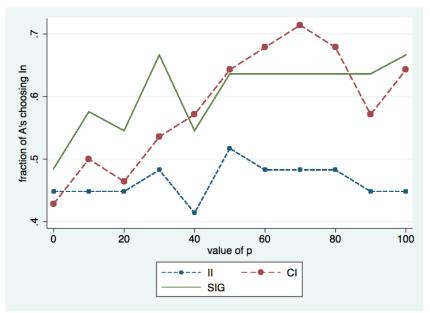
- 1. Strategies are elicited using the strategy method:
 - ► A and B make a choice for each possible value of p.
 - B makes a choice for each possible choice of A.
 - ▶ 2 cases in CI: CI-In and CI-Out
 - ▶ 3 cases in SIG: SIG-In, SIG-Out and No-SIG.
 - One value of p is randomly selected for payment.
- 2. Afterwards, beliefs are elicited for each value of p:
 - ▶ *B* is asked to guess how likely *A* chose *In* (10B).
 - In SIG: B is also asked to guess how likely A paid to inform B in case he/she chose In (chose Out).
 - ► A is asked to guess B's answer(s) (20B).

Main predictions

Suppose intentions matter: $\alpha < \frac{1}{2}$ and $\theta + \alpha \geq \frac{1}{2}$.

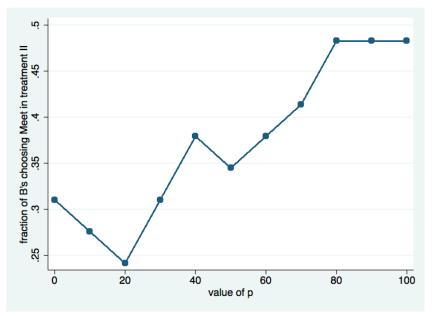
Predictions:

- 1. In all treatments, the fraction of A's (B's) who choose *In* (*Meet*) should be increasing in *p*.
- 2. Fixing *p*, the fraction of B's who choose *Meet* should be:
 - ▶ weakly higher in CI-In than in II and finally CI-Out.
 - ▶ weakly higher in SIG-In than in No-SIG and finally SIG-Out.
- 3. If the A's understand 2:
 - ▶ the fraction of A's who go *In* should be higher in *CI* than *II*.
 - ► in SIG, an increasing fraction of A's should signal In as p increases.


Dataset

- Ran a total of 11 sessions at the CESS Lab of NYU.
- On average, 16 subjects per session; about 30 pairs per treatment.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

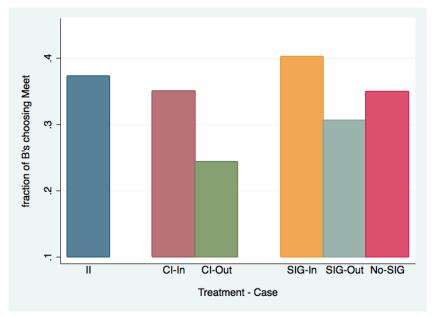

- Average earnings between \$10 and \$15.
- Average time: 50 minutes.

Prediction 1: Is A more trusting as p increases?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

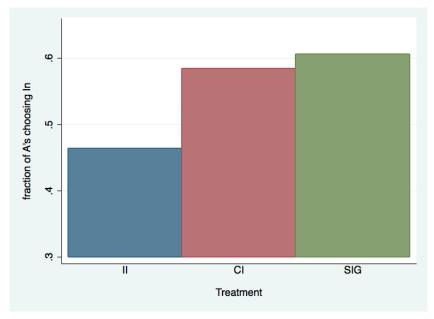
Prediction 1: Is B more cooperative as p increases?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで


Prediction 1: How to explain the non monotonicities for A?

Action pattern of A	Parameter values	Freq.	Percentage
non monotone	Х	2	6.90
	~	2	0.90
monotone –	Х	5	17.24
monotone +	$\alpha < \frac{1}{2} \text{ and } \alpha + \theta \geq \frac{1}{2}$	6	20.69
monotone 1	a < 2 and $a + b = 2$	U	20.05
	1	•	01.00
always <i>In</i>	$\alpha > \frac{1}{2}$	9	31.03
always <i>Out</i>	$\alpha + \theta < \frac{1}{2}$	7	24.14
	2		
_			
Total		29	100

Table : Pattern of choice of A in baseline II across the 11 values of p


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Prediction 2: Is B's behavior responsive to A's action?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Prediction 3: Does A understand the strategic implications?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Prediction 3: Paying to Signal In?

- Almost 50% of the A's in SIG paid to signal their action for at least one of the 11 values of p.
- ▶ 80% of the decisions to signal were made to signal *In* (pooling across subjects).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The A's understand the strategic nature of signalling: signalling is more likely as p increases.

Prediction 3: Paying to Signal In when p is high?

choice of (Action, Info)	% for <i>p</i> <50 (freq.)	% for $p \ge 50$ (freq.)
(Out, Signal)	5.45 (9)	3.03 (6)
(Out, No Signal)	38.18 (63)	32.83 (65)
(In, No Signal)	45.45 (75)	42.93 (85)
(In, Signal)	10.91 (18)	21.21 (42)
Total	100 (363)	100 (363)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Conclusion

A's intentions matter for B.

- ▶ In particular, B is less likely to choose *Meet*:
 - ▶ when the signal of trust is more noisy (i.e. as *p* decreases).
 - ▶ when B knows that A chose *Out* (cases *CI-Out* & *SIG-Out*.).

A understands B's concerns. In particular:

- A is more likely to choose *In*:
 - when the signal of trust is more transparent (as p increases)
 - ▶ when B is informed of A's action (*CI* versus *II*).
- A is more likely to signal *In* when the signal is stronger (i.e. p increases).