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Abstract

Decision theorists usually take a normative view on stochastic dominance: a

decision maker who chooses a dominated lottery must be making a mistake.

This paper provides evidence that stochastic dominance violations may natu-

rally occur in situations where anticipatory utility is high, such as going on a

holiday trip. In such a situation, the decision maker may trade the certainty

of going to their favorite destination for the excitement of not knowing where

they will go. I document this phenomenon in an experiment in which partic-

ipants make choices between a sure destination and a “surprise lottery” over

holiday trips, with the lottery outcome revealed close to the date of travel. I

vary lottery characteristics to understand when violations are most likely to

occur and analyze their properties. I discuss the implications for the design of

goods with a surprise element and for the modelling of anticipatory utility.
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1 Introduction

[...] dominance rules command virtually unanimous assent [...] even from those who

sometimes violate them in practice [...]. If a theory of decision under uncertainty is

to be consistent with any of the large body of economic theory which has already been

developed [...] it must satisfy these rules.
John Quiggin (1982)

When it comes to decision-making under uncertainty, stochastic dominance is consid-

ered to have real normative bite: a decision maker (DM) who violates such rule must

be making a mistake. This stance has a strong theoretical basis, via money-pump ar-

guments: a DM who violates stochastic dominance in the space of monetary gambles

may end up with no money through a sequence of trades. Due to its normative appeal,

extensive efforts have been made to preserve this property when relaxing expected

utility theory. For instance, models of rank-dependent probability weighting such as

rank-dependent expected utility or cumulative prospect theory (Quiggin, 1982; Tver-

sky and Kahneman, 1992) allow for non-linear probability weighting while ensuring

that first-order stochastic dominance is preserved, a major reason for their success

relative to the original prospect theory model of Kahneman and Tversky (1979).

This normative property also tends to perform well descriptively, for stochastic

dominance violations are typically rare. When violations do occur, they usually in-

volve complex gambles with more than two outcomes, suggesting that they might be

the result of a cognitive error (Birnbaum, 2005; Nielsen and Rehbeck, 2022; Puri,

2023). On the other hand, straightforward stochastic dominance violations are rarely

revealed directly and often require transitivity arguments or between-subject designs.

For instance, Gneezy, List, and Wu (2006) document violations of stochastic domi-

nance in the direction of a preference for certainty using a between-subject design,

reporting that violations disappear in a within-subject comparison.

While the normative and descriptive appeal of stochastic dominance is clear in

the contexts typically studied, it is by no means universal. If a DM exhibits other

concerns than maximizing material gains, violations of stochastic dominance could

emerge as the natural expression of those concerns. One such context is when the

DM derives utility not only from material consumption but also from anticipation.1

1Other contexts in which violations might result from a trade-off between maximizing material
gains and addressing non-material concerns are when the DM faces the risk of disappointment or
regret, or when they are affected by social or self-image concerns.

2



By anticipatory utility, I will broadly refer to the utility derived ahead of the realiza-

tion of an event (e.g., prize draw, consumption of a good, enjoyment of an activity)

from simply thinking about the outcome. In such contexts, the DM might trade

the guarantee of their favorite outcome for the excitement of not knowing what it is

and the pleasure of wondering what it might be. In other words, surprise enjoyment

might lead to violations of stochastic dominance in the direction of a preference for

randomization. The objective of this paper is to document this phenomenon in an

experiment and to derive its theoretical and practical implications.

The market for goods and services with a surprise element has expanded over the

years, so much so that it is now possible to buy a surprise box with pretty much

anything in it.2 While this market expansion suggests a positive demand for sur-

prises, such products often come with a bundle of characteristics that could make

them attractive to customers for other reasons than the surprise, such as person-

alization (products tailored to individual tastes), delegation of search and decision-

making costs, price discounts, and novelty elements (ability to discover new products

or events). The presence of these confounding factors makes it difficult to estimate

from observational data how much customers value the surprise component of such

goods. I thus employ experimental variation to address this identification problem.

To this end, I consider a positive consumption event that typically generates a

lot of anticipatory utility: going on a holiday trip. In the experiment, participants

are presented with a list of 10 European destinations, which they can possibly travel

to for 4 days and 3 nights. I measure their preferences over the 10 destinations via

a ranking combined with their valuation of each destination. Based on the elicited

preference ordering, I then present participants with decision problems of the type:

Option A: Go to Prague for sure.

Option B: Take a 50/50 chance of either Prague or Maastricht.

Destination revealed the week of departure.

For a DM with the strict preference Prague ≻ Maastricht, choosing Option B re-

veals a violation of stochastic dominance. The experiment systematically varies three

2The unboxing of surprise items has itself become a YouTube phenomenon, especially among
young children, with one video generating over 94 million views: https://www.npr.org/2014/09/13/
348241139/surprise-kids-love-unboxing-videos-too. Beyond, many goods and services have
a surprise component already built in, such as books, movies, live sports events, dinner experiences,
or games. Surprise rewards and loot boxes have also become key features of video game design.
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features of the lotteries: (i) the number of destinations in the support of the lottery;

(ii) the rank of each destination in the DM’s preference ordering; (iii) the probability

distribution over destinations. I exploit this variation to study the structure of the

observed violations and categorize them using simpler monotonicity properties. Vio-

lations are linked to a class of utility representations in which the DM trades off their

expected value from the trip with the uncertainty of not knowing where they will go.

To better understand randomization behavior, participants are also offered to de-

sign their favorite lottery and choose their preferred date for resolving the uncertainty.

If violations are only due to factors such as noise, indecision, or regret, participants

should not choose to delay the resolution of uncertainty. Finally, I ask whether vio-

lations subsist in the world of money by considering decision problems in which the

trips are replaced with their valuations. My main findings are as follows:

1. On average, respondents violate stochastic dominance in favor of randomization

in 1 out of 5 decision problems. However, individual heterogeneity is large.

2. Violations in favor of certainty occur as well, but less frequently; the two ten-

dencies are negatively correlated, suggesting they reflect different phenomena.

3. Violations are economically significant: participants sacrifice an average of £46
to preserve the surprise, about 11% of the market value of a trip.

4. Decision noise or measurement error cannot account for the observed violations

as they have a specific structure: violations occur more often for lotteries with

a higher entropy i.e., when the outcome is more uncertain.

5. Randomization behavior comes with a preference for delay: 74% of those who

prefer a lottery choose to postpone the realization of uncertainty by at least two

days, with about half giving up £5 or more to preserve the surprise.

6. Violations drop to nearly zero for lotteries over monetary prizes, suggesting that

the experiential value and/or multidimensionality of the good play a key role.

Taken together, these findings pose a challenge for existing theories of choice under

risk and uncertainty. The vast majority of deterministic models satisfy first-order

stochastic dominance, including expected utility and non-expected utility models
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(Quiggin, 1982; Gul, 1991; Tversky and Kahneman, 1992; Cerreia-Vioglio, Dillen-

berger, and Ortoleva, 2015). At the exception of models assuming utility from gam-

bling (Diecidue, Schmidt, and Wakker, 2004), deterministic models that allow for

violations generate a preference for certainty under standard parametrizations (Kah-

neman and Tversky, 1979; Bell, 1985; Loomes and Sugden, 1986; Kőszegi and Rabin,

2007). While standard stochastic choice models allow for violations, they cannot

explain the specific violations observed (i.e., for higher-entropy lotteries) or the pref-

erence for delayed resolution of uncertainty. Overall, existing models cannot jointly

account for all facts presented here without introducing new degrees of freedom. The

findings of this paper thus call for models that explicitly take into account the domain

of randomization, including the multi-attribute nature of the choice objects.

Besides the theoretical interest, this research has practical relevance. First, if peo-

ple value goods with a surprise element, then rewarding good behaviors with surprises

could have powerful motivational effects. Because surprises create an information gap

that triggers curiosity (Golman and Loewenstein, 2018), rewarding a DM with access

to non-instrumental information may foster motivation and goal pursuit. Speaking to

this point, Shen, Fishbach, and Hsee (2015) find that people expand more resources

to obtain an uncertain reward than a certain reward, even if the former is domi-

nated.3 Despite this, information preferences have received much less attention in

the literature on behavioral incentive design than other aspects of non-standard pref-

erences pertaining to time, risk, or social considerations (Levitt, List, Neckermann,

and Sadoff, 2016; Carrera, Royer, Stehr, and Sydnor, 2020). This research suggests

that surprises, if optimally structured, could increase motivation at a lower cost.

Second, the present findings have potentially important implications for welfare.

One question debated every year concerns the welfare effects of Christmas gift giving.4

A provocative article published in 1993 proposed that Christmas gifts are a source of

deadweight loss because recipients often derive less value from gifts than the amount

of money spent to purchase them (Waldfogel, 1993). While this interpretation has

been contested subsequently (Solnick and Hemenway, 1996; List and Shogren, 1998;

Ruffle and Tykocinski, 2000), no work so far has pushed forward, let alone attempted

3Relatedly, Corgnet, Gächter, and Hernán González (2020) find that persistence in an effort task
for a negligible reward is higher if the reward is stochastic, and the effect is stronger for high-entropy
(more unpredictable) rewards. This effect is attributed to an increase in stress and attentional costs.

4See for instance this New York Times article: https://www.nytimes.com/2014/12/21/upshot/
an-economist-goes-christmas-shopping.html.
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to price, the utility benefits of anticipating gifts and waiting to unwrap them.5 An-

ticipatory utility concerns might also partly explain why people enter sweepstakes or

purchase lottery tickets even when their chances of winning are virtually zero. For

instance, lottery players might derive utility benefits from dreaming about the pos-

sibility of a better life or the excitement of watching a televised draw. If utility from

anticipation is larger for lower-income households e.g., reflecting a desire to escape

from everyday-life anxieties, then conclusions about lotteries imposing a tax on the

poor might not be warranted (Lockwood, Allcott, Taubinsky, and Sial, 2021).

My work lies at the intersection of several empirical and theoretical literatures.

There is (well, surprisingly) little work in economics on preferences for surprise. At

a theoretical level, Ely, Frankel, and Kamenica (2015) formalize the notions of “sur-

prise” and “suspense” in a model where the DM derives utility from their beliefs

changing over time, as the uncertainty gets resolved. Unlike Ely et al., I only consider

one-shot resolution of uncertainty, thus ignoring the dynamics of belief updating; on

the other hand, I allow preferences to depend not only on belief uncertainty but also

on material outcomes, and study how the two are traded off depending on the mea-

sure of uncertainty used. By considering the Shannon entropy as one such measure,

this paper also connects to the notion of “surprisal” in information theory (Shannon,

1948), which quantifies the uncertainty of an event based on its probability.6

At an empirical level, multiple attempts at quantifying surprise and measuring

its hedonic value have been made in psychology, neuroscience, and computational

biology (Modirshanechi, Brea, and Gerstner, 2022). Within behavioral science, and

perhaps most connected to this work, is a recent marketing paper on the demand

for “mystery consumption” goods (Buechel and Li, 2022). In a series of studies with

different products, this paper shows that people tend to prefer goods with a mystery or

surprise element to goods of known content that have equal expected value. I study

the revealed preference implications of such a preference for surprise, by showing

that it can translate into violations of stochastic dominance and characterize their

properties.

More generally, this work speaks to a growing literature on preferences for ran-

domization (Agranov and Ortoleva, 2022). At a theoretical level, most models were

5In addition, gift givers may themselves derive utility from the anticipation of surprising others,
especially if they project their own preferences for surprise onto the recipients of their gifts.

6In a different vein, the desire to surprise others and its strategic implications have also been
examined within the framework of psychological games (Geanakoplos, Pearce, and Stacchetti, 1989).
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written with monetary outcomes in mind; as such, they usually satisfy stochastic

dominance. This study moves outside of the traditional domain of money to consider

how studying experiential goods with multiple attributes might expand the scope for

randomization behavior. At an empirical level, many papers have documented a pref-

erence for coin flipping that cannot be rationalized by simple indifferences or mistakes

(Agranov and Ortoleva, 2017; Dwenger, Kübler, and Weizsäcker, 2018; Levitt, 2020;

Zhang and Zhong, 2020). Besides motives such as indecision, regret, or disappoint-

ment, I propose anticipatory utility from surprises as another driver to consider.

Finally, this paper speaks to a large literature incorporating the role of thoughts

and feelings as a key driver of decisions (Schelling, 1987). Within this literature,

many papers have sought to understand how anticipatory feelings might affect the

dynamics of consumption decisions, the demand for or against receiving information,

or people’s beliefs about future outcomes (Loewenstein, 1987; Caplin and Leahy,

2001; Thakral and Tô, 2022). Most empirical studies have been conducted in the lab,

often with monetary amounts or negative consumption events such as medical tests

or electric shocks (Ganguly and Tasoff, 2017; Engelmann, Lebreton, Salem-Garcia,

Schwardmann, and Weele, 2022; Falk and Zimmermann, 2023; Masatlioglu, Orhun,

and Raymond, 2023). Instead, this paper studies a positive consumption event in a

field setting, suggesting dreaming as a source of utility.

The rest of this paper is organized as follows. Section 2 introduces the theoretical

framework used to structure the experiment and analyses. Section 3 describes the ex-

perimental design. Section 4 presents findings on the measurement of preferences over

destinations, while Section 5 discusses the prevalence, size, and shape of stochastic

dominance violations in the experiment. Section 6 investigates mechanisms. Sec-

tion 7 concludes with a discussion of the results and open issues left for future work.

Additional results and metadata can be found at https://osf.io/ya7x6/.

2 Theoretical framework

Setup I consider a DM who trades off the expected outcome of a lottery (i.e.,

what destination they will go to) with the excitement or anxiety produced by the

uncertainty of not knowing the outcome. Let X := {x1, x2, ..., xn} be a set of n

possible outcomes and let p := (p1, p2, ..., pn) ∈ ∆n(X) be a probability measure

on X, with pk the probability of xk. The interior of the simplex is int∆n(X) :=
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{p := (p1, p2, ..., pn)|
∑n

k=1 pk = 1, pk > 0 ∀k = 1, ..., n} and the support of p is

supp(p) := {xk ∈ X | pk > 0}. Below I will abuse notation and identify with xk the

dirac measure δxk
= 1 if xk is realized. When useful, I will enumerate a lottery p

with its prizes as (..., xj, pj ; ...; xk, pk; ...). The primitive is a weak order ⪰ on ∆n(X).

Definitions For any p,q ∈ ∆n(X), say that p stochastically dominates q, denoted

p ▷SD q, if p{x | x ⪯ xk} ≤ q{x | x ⪯ xk} for all xk ∈ X (with at least one strict

inequality). The DM satisfies stochastic dominance if p ▷SD q ⇒ p ≻ q. In the

experiment, I will focus on decision problems in which either p or q is a degenerate

outcome, xi. Let D+ denote the set of dominance problems in which the lottery is

dominated by the sure outcome (i.e., xi ⪰ x for all x ∈ supp(p) and xi ≻ x for some

x ∈ supp(p)). Similarly, denote by D− the set of problems in which the lottery is

dominant. I will use d, d′, d′′ to refer to generic members of D+∪D−. The DM reveals

a preference for randomization (certainty) at some d ∈ D+ (D−) if p ⪰ xi (xi ⪰ p).

Utility representation The DM has a valuation for each outcome xk ∈ X denoted

by vk := v(xk) ∈ [0, v̄]. Letting v := (v1, v2, ..., vn) ∈ [0, v̄]n be the corresponding vec-

tor of valuations, I assume that the DM’s preferences ⪰ on ∆n(X) can be represented

as the outcome of the following maximization problem:

max
p∈∆n(X)

Uα,Ψ(p) := p · v + αΨ(p,v)

where Ψ(.) ≥ 0 summarizes the uncertainty contained in p and α is a taste parameter.

The parameter α could a priori take any value to allow for both attraction (α > 0)

or aversion (α < 0) towards the unknown.7 Depending on the shape of Ψ, the DM

may violate stochastic dominance for |α| large enough i.e., favor a lottery over its

best outcome if α > 0, or reject a lottery in favor of its worst outcome if α < 0.

I allow the value of uncertainty Ψ to depend on p (e.g., a uniform distribution

brings more uncertainty) and/or v (e.g., more spread in the possible outcome values

7Ψ could refer to the discounted sum of per period excitement (anxiety) generated by the surprise
until the date t at which the uncertainty is resolved, Ψ(p,v; t) =

∑t
τ=0 δ

τψτ (p,v). In principle, the
excitement or anxiety produced each period, ψτ (.), might differ over time e.g., (i) if the DM acquires
new information and updates their beliefs, or (ii) if proximity to the date at which the uncertainty
is resolved raises attention to the unknown so that ψt ≥ ψτ , ∀ τ < t. For our purposes, it will be
enough to consider the aggregate measure Ψ and ignore the specific resolution date t. Implicit in
the representation is the assumption that Ψ = 0 if t = 0 (uncertainty resolved immediately).
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makes a lottery more uncertain). I will primarily, but not exclusively, focus on func-

tions of the form Ψ(p,v) = ψ(H(p,v)) where ψ(0) = 0, ψ′(.) > 0, and H(p,v) is a

“valid” measure of uncertainty in the sense of Frankel and Kamenica (2019) i.e., a

measure such that (i) H(xk,v) = 0 for all xk ∈ X (uncertainty is null for degenerate

outcomes); (ii) H is globally concave in p (uncertainty increases when mixing two dis-

tributions), and H is smooth. To give examples, a valid measure of uncertainty that

depends on both p and v is the variance in valuationsH(p,v) =
∑n

k=1 pk(vk−Ep(v))
2;

one that only depends on p is the Shannon entropy H(p) = −
∑n

k=1 pk ln(pk). For

reasons that will become clear below, I allow H to enter non-linearly in the DM’s

utility through the monotone transformation ψ.

2.1 Monotonicity properties

To categorize violations due to preference for randomization (α > 0) and relate them

to features of the utility representation, I will test whether choices satisfy two simpler

monotonicity properties. The first property requires that, for any two outcomes in

a lottery p, increasing the probability weight on the worse outcome cannot make

the DM now prefer the lottery over the sure outcome it is compared to (all else

unchanged). I call this property P-MON for “monotonicity in probabilities” since it

focuses on the probability weights assigned to two outcomes kept fixed. Formally:

P-MON: For any n ≥ 2, p ∈ ∆n(X), and xi, xj, xk ∈ X s.t. xj ≻ xk,

xi ≻ (..., xj, pj ; ...; xk, pk; ...) ⇒ xi ≻ (...xj, pj − ϵ; ...;xk, pk + ϵ; ...)

for all ϵ > 0 s.t. pϵ := (..., pj − ϵ, ..., pk + ϵ, ...) ∈ ∆n(X) and supp(p) = supp(pϵ).

The second monotonicity property, coined X-MON, is imposed on the outcomes while

keeping the probabilities unchanged: for any lottery p, this property requires that

replacing a given outcome in p with a worse outcome cannot make the DM now prefer

the lottery over the sure outcome it is compared to (all else unchanged):

X-MON: For any n ≥ 2, p ∈ ∆n(X), and xi, xj, xk, x̃k ∈ X s.t. xk ≻ x̃k,

xi ≻ (..., xj, pj ; ...; xk, pk; ...) ⇒ xi ≻ (..., xj, pj ; ...; x̃k, pk; ...)
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A counterpart to these properties can be easily formulated for violations in the direc-

tion of a preference for certainty (α < 0), by requiring the DM to still prefer a lottery

over a sure outcome if the lottery assigns a higher weight to better ranked outcomes.8

I will use these monotonicity properties to provide non-parametric tests of several

classes of preferences compatible with a Uα,Ψ-representation. Clearly, a standard DM

(α = 0) will satisfy all properties, while a DM with α > 0 (resp. α < 0) may violate

P-MON and/or X-MON (or their counterpart). Besides allowing to sign α, the tests

provide valuable information on the shape of Ψ i.e., how it depends on p and/or v.

To make this point, I introduce additional notations. Let B+ and B− be the subset

of dominance problems with binary-outcome lotteries i.e., problems of the type {xi,
(xj, p;xk, 1− p)}. Within this subset, it will be useful to distinguish weak dominance

problems, in which xi ∼ x for some x ∈ supp(p), denoted B+
∼ and B−

∼, from strict

dominance problems, in which xi ≻ x or x ≻ xi for all x ∈ supp(p), denoted B+
≻ and

B−
≻. For example, assuming x1 ≻ x2 ≻ x3, the decision problem {x1, (x1, p;x2, 1−p)}

is an element of B+
∼, while {x3, (x1, p;x2, 1− p)} is an element of B−

≻.

2.2 Preference classes

I now discuss how the above behavioral properties relate to the shape of Ψ. Through-

out, I focus on the case α > 0; obvious corollaries hold for α < 0. Since these

properties are trivially satisfied if the DM never violates stochastic dominance, I

assume that α is large enough for ⪰ to violate stochastic dominance at some d ∈ D+.

Observation 1. Assume Ψ(p,v) = ψ(H(p,v)) where H is a valid measure of

uncertainty, and ψ is such that ψ(0) = 0 and ψ′(.) > 0. Then ⪰ may violate P-MON

at some (d, d′) ∈ D+ ×D+.

In particular, a DM may switch from a sure outcome xi to a dominated lottery

(xj, pj;xk, pk; ...;xK , pK) where xi ≻ xj ≻ xk ≻ ... ≻ xK if ϵ-weight is reallocated

8Formally, the corresponding monotonicity properties are:

P-MON*: For any n ≥ 2, p ∈ ∆n(X), and xi, xj , xk ∈ X s.t. xj ≻ xk,
(..., xj , pj ; ...; xk, pk; ...) ≻ xi ⇒ (...xj , pj + ϵ; ...; xk, pk − ϵ; ...) ≻ xi, for all ϵ > 0 s.t.
pϵ := (..., pj + ϵ, ..., pk − ϵ, ...) ∈ ∆n(X) and supp(p) = supp(pϵ).

X-MON*: For any n ≥ 2, p ∈ ∆n(X), and xi, xj , xk and x̃j ∈ X s.t. x̃j ≻ xj ,
(..., xj , pj ; ...; xk, pk; ...) ≻ xi ⇒ (..., x̃j , pj ; ...; xk, pk; ...) ≻ xi
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from xj to xk so that Ψ(pϵ,v) > Ψ(p,v). A violation of P-MON then occurs if

p · v − ϵ(vj − vk) + αΨ(pϵ,v) > vi > p · v + αΨ(p,v)

i.e., the utility boost from uncertainty α (Ψ(pϵ,v)−Ψ(p)) compensates the material

loss ϵ(vj − vk). How pervasive those violations are however depends on the shape of

ψ and the type of problem. In fact, if ψ is weakly concave, then ⪰ cannot violate

P-MON on the set B+
∼ of weak dominance problems with binary-outcome lotteries:

Observation 2. Assume Ψ(p,v) = ψ(H(p,v)) where H is a valid measure of

uncertainty, and ψ is such that ψ(0) = 0, ψ′(.) > 0 and ψ′′(.) ≤ 0. Then ⪰ must

satisfy P-MON on B+
∼ for all α > 0.

In other words, if ψ is globally (weakly) concave, then the DM will switch at most

once from xi to (xi, p;xj, 1 − p) as p increases for any xi ≻ xj. For example, if

Ψ(p) = −
∑n

k=1 pk ln(pk) (i.e., ψ = I), then the DM cannot exhibit the preference

(x1, 0.5;x2, 0.5) ≻ x1 ≻ (x1, 0.9;x2, 0.1). On the other hand, P-MON violations may

occur on B+
∼ by convexifying ψ (e.g., for ψ(H) = Hγ with γ > 1). They can also

occur when ψ is concave if |supp(p)| ≥ 3 or if dominance is strict (i.e., the best lottery

outcome is strictly worse than the sure option). Intuitively, a new degree of freedom

must be introduced to allow for such monotonicity violations (see Appendix F).

Observation 3. If Ψ is independent of v, then ⪰ must satisfy X-MON for all α > 0.

This follows immediately from the representation: if some xk ∈ supp(p) is replaced

by another x̃k such that xk ≻ x̃k, Ψ(p) is unchanged but the expected material gain

from the lottery falls by pk(vk − ṽk). Thus, replacing a lottery outcome with a worse

option cannot induce the DM to now prefer the lottery. Relatedly, if Ψ is independent

of v, the optimal weight p∗k on outcome xk must be increasing in the DM’s valuation

of xk. In other words, the optimal p∗ must be a negatively skewed distribution. As an

example, for the entropy case H(p) = −
∑n

k=1 pk ln(pk) (taking ψ = I), the optimal

p∗ ∈ int∆n(X) assigns weight p∗k to xk according to the logit formula

p∗k =
exp(vk/α)∑n
j=1 exp(vj/α)

As an alternative measure, I also study in Appendix F what Ely, Frankel, and Ka-
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menica (2015) call the “residual variance,” H(p) =
∑n

k=1 pk(1 − pk).
9 Unlike the

entropy, the optimal p∗ in this case need not belong to the interior of ∆n(X). Both

measures are part of the larger class of permutation-invariant measures, for which

limα→∞ p∗ = ( 1
n
, 1
n
, ..., 1

n
) provided H is strictly concave.10

Observation 4. If Ψ depends on the spread in valuations, then ⪰ may violate

X-MON at some (d, d′) ∈ D+ ×D+.

For instance, if Ψ(p,v) =
∑n

k=1 pk(vk − Ep(v))
2, the DM will exhibit the preference

(x1, p;x3, 1 − p) ≻ x1 ≻ (x1, p;x2, 1 − p) provided that α ∈
(

1
p(v1−v3)

, 1
p(v1−v2)

)
. As

α → ∞, such a DM will prefer to put equal weight on the two most extreme outcomes.

To complete the typology, consider measures outside of the class of valid measures

of uncertainty. First, measures that capture the variability in valuations without

accounting for the probability of each prize may violate X-MON but not P-MON. For

instance, a DM who only cares about the average distance between valuations will

prefer lotteries that put all the weight on the two most extreme outcomes, with (1−ϵ)-
weight on the top outcome. Second, a DM for whom the only relevant uncertainty is

in the size of the support of the lottery i.e., Ψ(p,v) = ψ(|supp(p)| − 1), will satisfy

both P-MON and X-MON. Note that a measure of this type is only weakly concave as

Ψ(λp+(1−λ)q) = λΨ(p)+(1−λ)Ψ(q) for all p,q ∈ int∆n(X). Such a DM will prefer

a lottery that assigns (1 − ϵ)-weight to their preferred outcome and distributes the

remaining ϵ-weight on the other n−1 outcomes. Table 1 summarizes the relationship

between the monotonicity properties and the shape of Ψ with examples in each cell.

9To interpret this measure, consider a DM who is offered lottery p and contemplates each possible
outcome xk separately, wondering whether it will materialize or not next period. Letting Xk = 1
if xk is realized and Xk = 0 otherwise, the DM expects pk = P{Xk = 1} under p, with variance
pk(1− pk). Thus, the residual variance can be interpreted as the sum of the variances of Bernoulli
random variables Xk ∼ B(pk), one for each outcome xk that could be realized.

10H is permutation invariant if H(p) = H(pσ) for all pσ = (pσ(1), ..., pσ(n)) ∈ ∆n(X), where

σ : {1, ..., n} → {1, ..., n} is a permutation function. To see why limα→∞ p∗ = ( 1n ,
1
n , ...,

1
n ), note

that if H is strictly concave, it has a unique maximizer, p∗; if H is also permutation invariant,
H(p∗) = H(p∗

σ) implies p∗ = p∗
σ for all permutations σ. The only distribution that satisfies this

condition is p∗ = ( 1n ,
1
n , ...,

1
n ).
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Table 1: Typology of Ψ(p,v) measures

✓ X-MON ✗ X-MON

✓ P-MON

Measures Ψ(p,v) = ψ(h(p)) s.t.

- ψ(h(p)) = ψ(h(q)) ∀ p,q ∈ int∆n(X)

- h weakly concave

- h(δx) = 0 ∀x ∈ X

Example: Cardinality of support

ψ(|supp(p)| − 1)

Measures of distance between valuations

Ψ(p,v) = ψ
(

1
φ(|J |)

∑
j∈J

∑
k>j

d(vj, vk)
)

where J := {j ∈ N | xj ∈ supp(p)}
and φ(|J |) ≥ 1 is a weighting function

Example: Average squared distance

ψ
(

1
|J |(|J |−1)/2

∑
j∈J

∑
k>j

(vj − vk)
2
)

✗ P-MON†

Measures Ψ(p,v) = ψ(H(p)) s.t.

- H globally concave

- H(δx) = 0 ∀x ∈ X

Example 1: Shannon entropy

ψ(−
∑n

k=1 pk ln(pk))

Example 2: Residual variance

ψ(
∑n

k=1 pk(1− pk))

Measures Ψ(p,v) = ψ(H(p,v)) s.t.

- H globally concave in p

- H(δx,v) = 0 ∀x ∈ X

- H increasing in distance btw.valuations

Example: Variance in valuations

ψ(
∑n

k=1 pk(vk − Ep(v))
2)

Notes: †Satisfied on B+
∼ if ψ′ > 0, ψ′′ ≤ 0

3 Experimental Design

3.1 Recruitment and incentives

Recruitment period An initial pilot took place in December 2019 with 9 partici-

pants recruited via Facebook ads. The main data was collected using a more focused

version of the survey administered to 83 participants in March 2020. All responses

were completed over March 5th - 19th, at a time of growing concerns over the COVID-

19 pandemic, with travel restrictions and lockdowns spreading across the world.11 As

11Italy was the first European (and worldwide) country to impose a national lockdown on 9 March
2020. The pilot survey included an Italian destination, which was replaced by a destination in Por-
tugal for the main study. However, by March 19th, several destinations advertised in the survey were
in countries that had imposed travel restrictions (https://ourworldindata.org/coronavirus). By
contrast, the UK had not imposed any restrictions yet, which might have made concerns less salient;
as a matter of fact, only one respondent raised concerns about the pandemic in the survey.
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the crisis was still in its infancy, it is however plausible that most people expected

to be able to travel during the year; in fact, about 75% of respondents anticipated a

travel date before end of 2020.12 In an exploratory analysis, I assess how the survey

completion date interacts with decisions, finding a limited impact (Appendix A.2).

Recruitment procedure About 87% of respondents were recruited via the Be-

havioural Research Lab of the London School of Economics, with the rest recruited

on social media or some other channel. The survey was advertised as an online study

on preferences for travel. The eligibility requirements were: being at least 18 years

old, living in London, and holding valid documents to travel to the European Union.

Once started, the survey had to be completed within 2 hours in order to limit the

scope for surprise enjoyment within the survey. Respondents had to correctly answer

comprehension questions throughout the survey. The average completion time was

44 minutes. Summary statistics about the sample are presented in Table A1.

Incentives All participants who completed the study received a £25 voucher valid

for a trip with the travel partner, who was kept anonymous until the end of the survey.

In addition, participants were told that they could win a free (non-transferable) trip

to a European destination for 4 days and 3 nights worth £420. They knew that

the survey was capped at 100 responses and that we had 5 such trips to give away,

implying a 1 in 20 chance of winning. The other participants received either a discount

voucher for a specific trip or a monetary payment. The prize received was based on

one randomly selected decision in one of the sections of the study.13 Ignoring the trip

vouchers, the above incentives translate into expected earnings of around £34.80.

12In line with this, a survey on public expectations about the lifting of COVID-19 restrictions
in Ireland (N = 800) found that over 60% (80%) of respondents surveyed in April 2020 expected
restrictions on non-essential international travel to be lifted by the end of 2020 (by June 2021)
(https://www.esri.ie/system/files/publications/SUSTAT88.pdf).

13The use of the Random Incentive System (RIS) is standard in experimental economics. This
procedure for eliciting preferences is incentive compatible under expected utility (Azrieli, Chambers,
and Healy, 2018). However, respondents who seek to maximize uncertainty could in principle try
to randomize across decision problems, thus treating the experiment as one big lottery. To examine
whether this is a real concern, I asked respondents how they made their choices after a sequence of
decisions problems. With no exception, respondents reported treating each problem in isolation.
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3.2 Structure of the study

Respondents first indicated a date at which they considered traveling. Afterwards,

they were taken through 5 parts detailed below and summarized in Table 2.

Table 2: Structure of the survey

Part 1 Elicitation of preferences ⪰ over holiday trips

▷ Ordinal ranking of 10 destinations, x1, x2, ..., x10
▷ Valuation vk ∈ [0, 500] for each destination xk

Part 2 Choices in 45 binary decision problems (DPs)

A: (xi, 1) vs. B: (xj, pj;xk, pk; ...;xl, pl)

Part 3 Design of favorite lottery

▷ Selection of support and probability distribution
▷ Selection of date at which to resolve the uncertainty
▷ [If chose a positive delay] Valuation of delay

Part 4 Preferences for a “wildcard trip”

▷ Valuation of a trip to an unknown destination
▷ Questions to understand motives

Part 5 Preferences over monetary gambles

3 DPs with each destination replaced by its valuation
Valuation of one risky and one ambiguous monetary bet

Questions about travel history and preferences

End Selection of choice problem

3.2.1 Elicitation of a preference ordering over 10 holiday trips

In Part 1, I elicited respondents’ preferences over a set of trips to one of 10 European

destinations. Respondents saw a short description of each trip with a picture and

some information about the location, activities available on site, and accommodation

offered (see example in Figure 1). The 10 destinations were: Düsseldorf, Gothenburg,

Maastricht, Midi-Pyrénées, Porto, Prague, Santiago de Compostela, Sofia, Turku,

Zakopane. The trip packages were designed by the travel partner with 4 concerns

in mind: (i) no two destinations should be in the same country; (ii) they should

offer a diversity of experiences; (iii) they should be easy to travel to and from; (iv)
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Figure 1: Sample trip description

packages should all have the same value for money (£420).14 After reading each trip

description, respondents rated their degree of familiarity with the destination. Their

preferences ⪰ over the 10 trips were then elicited in two steps:

Step 1: Participants ranked the 10 destinations (listed in a random order), from top

to bottom (options ranked x1 to x10).

Step 2: Right next to each destination xk in the list, participants entered their mini-

mum price vk between 0 and 500 GBP for giving up the trip if they won it.

To incentivize the ranking in Step 1, respondents were informed that their chances of

being offered a given trip (or equivalent amount of money) were higher if the trip was

listed higher in their ranking. Under fairly mild assumptions, this procedure gives an

incentive to truthfully report a strict preference.15 However, the data from Step 1 is

not rich enough to know whether preferences are strict or weak. To identify potential

14Participants were informed that “the travel partner operates within a fixed budget such that if
a destination is cheap to travel to, more money will be spent on the accommodation and vice versa.”

15The exact probability distribution was p = (0.25, 0.20, 0.15, 0.12, 0.10, 0.08, 0.05, 0.03, 0.02, 0),
where p1 = 0.25 is the probability of drawing the destination ranked #1 and so on; this information
was available by clicking on a link. Incentive compatibility requires the DM to satisfy FOSD over
the subset of lotteries {pσ ∈ ∆n(X) | σ : N → N is a permutation function}. In principle, this is
not guaranteed e.g., a DM who prefers lotteries with a larger variance in valuations might put more
weight on more extreme (less valued) options. However, this property is satisfied for most measures
considered (entropy, residual variance, support). In addition, since the realized draw was revealed
right at the end of the survey, the anticipatory utility benefits of randomization were limited.
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indifferences, I use the cardinal information collected in Step 2. Valuations were

elicited using the standard Becker-DeGroot-Marschak (1964) procedure (henceforth,

BDM): if a respondent won a trip to the destination ranked #k, xk, their valuation

vk was compared to a random number V ∼ U[0,500]; if V ≥ vk, the respondent received

£V instead of the trip (and otherwise kept the trip).16 Monotonicity of valuations

with respect to the ranking was not strictly enforced, but respondents were told that

“logically they should have entered a higher price for options they ranked higher” and

asked to check their answers. I combine the data from Steps 1 & 2 to construct a

respondent’s preference ordering ⪰ over destinations (see Section 4.2).

3.2.2 Binary choice data

In Part 2, respondents faced a series of 45 decision problems (henceforth, DP), which

were tailored to each respondent based on their ranking of destinations x1, x2, ... x10

in Part 1 (see Section 3.2.1, Step 1). Most problems involved a choice between the

following two options:

Option A: a trip to a given destination for sure (either x1, x2, x3, x5 or x10)

Option B: a “surprise lottery” between two or more destinations.

With a surprise lottery, participants could only discover their travel destination the

week of departure: all the information would be contained in a sealed envelope re-

ceived about 7 days prior to departure, with a suggestion to only open it at the

airport. No information would be sent in between, except for a confirmation email

after booking (with travel dates/times and airport), to focus on one-shot resolution

of uncertainty. To keep the two options as comparable as possible, the email and

envelope would be sent following the same schedule. In addition, choices were framed

in exactly the same way, with 10 lottery tickets either entirely allocated to the sure

destination (A) or split between two or more destinations (B). An illustration of one

decision problem is provided in Figure 2. The surprise lotteries varied in 3 ways:

16While the BDM mechanism is incentive compatible in a standard EU framework, this is no
longer guaranteed if the DM values uncertainty. With V ∼ U[0,500], reporting ṽ = 250 maximizes
the uncertainty over the realized prize (trip or money); depending on the respondent’s true valuation
v, the bias ṽ − v may be either positive or negative. Given the early resolution of uncertainty, the
bias should be at most small and lead (if anything) to underestimating the size of α, due to the
compression in valuations induced. See Appendix B.1 for a full analysis.
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Figure 2: Sample decision problem

Notes: The destinations presented in a given DP depended on the respondent’s ranking. Choosing
Option B entailed learning the outcome of the lottery no earlier than one week before travel.

1. Number of destinations : The lottery contained 2, 3, 5 or all 10 destinations.

2. Ranking of the destinations : Fixing the support size, I varied the rank of the

destinations in a respondent’s preference ordering (e.g., {x1, x2} vs. {x1, x10}).

3. Chances of each destination: The probability distribution p over destinations

varied across DPs. For two-outcome lotteries, p ∈ {0.1, 0.5, 0.9}. For lotteries

with 3, 5 or 10 outcomes, the weights were (close to) uniform.17

In 6 of the 45 DPs, Option B was a degenerate lottery i.e., respondents simply chose

between two destinations (with Option A always ranked higher); I use this information

to assess measurement error in the original ranking. In 24 DPs, Option A was ranked

(weakly) higher than all destinations in the Option B lottery; choosing B thus implied

a violation of stochastic dominance (up to indifferences and mistakes) in the form of a

preference for randomization, α > 0 (set D+). In 11 DPs, the opposite was true, with

Option A ranked (weakly) lower than all destinations in Option B, thus allowing the

respondent to express a preference for certainty, α < 0 (set D−). In addition, there

were 4 DPs where Option B contained both higher- and lower-ranked destinations

relative to Option A. Table 3 presents the full list of DPs.

The 45 DPs appeared in a fixed order with simple lotteries (two destinations,

equal probability) presented first and progressively moving to more complex choices.

All problems appeared on one page. Before making their choices, respondents were

reminded of their ranking from Part 1; in addition, they could consult again the trip

descriptions. Respondents were asked to review their 45 selections before moving on.

17For lotteries with 3 options, xi, xj and xk such that i ≤ j < k, the weights were (pi, pj , pk) =
(0.4, 0.3, 0.3).
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Table 3: List of 45 decision problems

DP # Degenerate lotteries (6 choices)

1, 4, 10, 13 A: (x1, 1) vs. B: (xk, 1) for k ∈ {2, 3, 5, 10}
7 A: (x2, 1) vs. B: (x3, 1)
16 A: (x5, 1) vs. B: (x10, 1)

Dominated lotteries (24 choices)

2, 18, 27 A: (x1, 1) vs. B: (x1, p;x2, 1− p) for p ∈ {0.5, 0.9, 0.1}
5, 20, 29 A: (x1, 1) vs. B: (x1, p;x3, 1− p) for p ∈ {0.5, 0.9, 0.1}
8, 22, 31 A: (x1, 1) vs. B: (x2, p;x3, 1− p) for p ∈ {0.5, 0.9, 0.1}
11, 24, 33 A: (x1, 1) vs. B: (x1, p;x5, 1− p) for p ∈ {0.5, 0.9, 0.1}
14, 25, 34 A: (x1, 1) vs. B: (x1, p;x10, 1− p) for p ∈ {0.5, 0.9, 0.1}
36 A: (x1, 1) vs. B: (x1, 0.4;x2, 0.3;x3, 0.3)
37 A: (x1, 1) vs. B: (x1, 0.4;x3, 0.3;x5, 0.3)
38 A: (x1, 1) vs. B: (x2, 0.4;x3, 0.3;x4, 0.3)
39 A: (x5, 1) vs. B: (x6, 0.4;x7, 0.3;x8, 0.3)

40 A: (x1, 1) vs. B: (x1, 0.2;x2, 0.2;x3, 0.2;x4, 0.2;x5, 0.2)
41 A: (x1, 1) vs. B: (x1, 0.2;x3, 0.2;x5, 0.2;x7, 0.2;x10, 0.2)
42 A: (x1, 1) vs. B: (x6, 0.2;x7, 0.2;x8, 0.2;x9, 0.2;x10, 0.2)
43 A: (x5, 1) vs. B: (x6, 0.2;x7, 0.2;x8, 0.2;x9, 0.2;x10, 0.2)

44 A: (x1, 1) vs. B: (x1, 0.1;x2, 0.1; ...;x9, 0.1;x10, 0.1)

Dominant lotteries (11 choices)

3, 19, 28 A: (x2, 1) vs. B: (x1, p;x2, 1− p) for p ∈ {0.5, 0.9, 0.1}
6, 21, 30 A: (x3, 1) vs. B: (x1, p;x3, 1− p) for p ∈ {0.5, 0.9, 0.1}
9, 23, 32 A: (x3, 1) vs. B: (x1, p;x2, 1− p) for p ∈ {0.5, 0.9, 0.1}
12 A: (x5, 1) vs. B: (x1, p;x5, 1− p) for p = 0.5
15 A: (x10, 1) vs. B: (x1, p;x10, 1− p) for p = 0.5

Other lotteries with no dominance (4 choices)

17, 26, 35 A: (x5, 1) vs. B: (x1, p;x10, 1− p) for p ∈ {0.5, 0.9, 0.1}
45 A: (x5, 1) vs. B: (x1, 0.1;x2, 0.1; ...;x9, 0.1;x10, 0.1)

Notes: DP # refers to the decision problem number as shown on the respondent’s screen; xk is the
destination ranked # k by the respondent (see Section 3.2.1, Step 1).

3.2.3 Design task and WTP for delay

While binary choices allow to directly reveal stochastic dominance violations, they do

not allow to pin down respondents’ optimal lottery, nor identify whether they value

preserving the surprise. In Part 3, respondents were offered to design their favorite

lottery and select their preferred date at which to learn the destination. As a first
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step, respondents decided whether they preferred a sure destination (no surprise) or

a surprise lottery of their choice. Those who chose to build a lottery (i) picked the

support from the set of 10 destinations; (ii) allocated 100 lottery tickets to the selected

options. As a second step, respondents selected the date at which to discover their

destination from a list of options (e.g., “Today, after I completed the survey,” “About

2 weeks from now,” “About 4 weeks before going to the airport,” etc.), or by indicating

a specific day of their choice.18 Those who initially preferred a sure destination were

asked whether they would now prefer a lottery if the destination discovery date could

be chosen. Finally, those who chose to delay the resolution of uncertainty (i.e., did

not pick “Today, after I completed the survey”) indicated how much they valued this

option by making choices in a Multiple Price List of the form:

Revealing Later vs. Revealing Now + £X
[Chosen date] [End of survey]

where X ∈ {5, 10, 15, 20, 30, 40, 50}. If implemented, one of the rows was randomly

selected for payment, thus ensuring incentive compatibility.

3.2.4 Additional data

In the last two parts, I collect data to better understand randomization decisions. In

Part 4, I elicit respondents’ valuation v∗ ∈ [0, 500] for a “wildcard trip” to a new and

unknown destination, which was closer in spirit to what the company sold.19 I collect

information on the determinants of these valuations by measuring respondents’ mo-

tives and perceived chances of certain outcomes. In Part 5, I study whether stochastic

dominance violations remain when prizes are monetary and measure respondents’ risk

and ambiguity attitudes in the domain of money. Finally, I collect information about

respondents’ travel history and travel preferences as well as their overall assessment

of the concept of “surprise trip,” including their reasons for (dis)liking the concept.

The decision selected to count was revealed right at the end.

18Respondents were told that they would be informed of their destination by email at the specified
date, but still receive the sealed envelope and travel guide one week before going to the airport.

19Participants were told that the wildcard trip was to another European destination (possibly in
one of the 10 countries already presented or a different country), and came with the same features
as the other 10 trips (same duration, market value, date the surprise is revealed, etc.). Valuations
were again elicited via a BDM mechanism. See Appendix D.1 for more information.
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4 Preliminaries: preferences over destinations

I start this results section by examining aggregate and individual preferences over the

set X of 10 destinations, and explain how I construct the preference relation on X.

4.1 Aggregate preferences

Using the average rank or average valuation across respondents as a measure of ag-

gregate preferences, no trip clearly dominates or is clearly dominated (Figure B1).

Gothenburg and Düsseldorf show up as the most and least popular destinations for

both the ranking and valuations, but the null hypothesis of randomly assigned ranks

can only be rejected for these two destinations.20 The average valuation is similar

across destinations (between £226.8 and £273.6), and standard deviations are large

(between £112.4 and £125.4). These findings reflect the fact that the 10 trips offered

a diversity of experiences and had the same market value (£420). Interestingly, the

average valuation of the wildcard trip at £275.4 exceeds the other 10 trips, a notable

result given that no information on the wildcard trip was provided except for its mar-

ket value. This finding suggests that a travel company unable to cater to travelers’

heterogeneous preferences (e.g., due to a lack of data or capacity constraints) could

maximize total revenue by selling trips to an unknown destination.

While no destination is a clear winner or loser, there is a significant difference in

the average valuation of higher- vs. lower-ranked options (Table B1). On average,

the difference is £38 when comparing the destinations ranked #1 and #2, and goes

up to £218 when comparing the #1 and #10. Importantly, the vast majority of

respondents greatly valued the possibility to go on at least one of these holiday trips:

the trip of highest value was worth at least £200 for all respondents and at least £320
for 75% of them. These amounts are non trivial given that many respondents were

students. On the other hand, the lowest-rank destination seemed quite unattractive

for many respondents, with 25% valuing it at £80 or less and only 25% valuing it at

£220 or more; this suggests that not all destinations might be a good surprise.

20If respondents assigned a rank at random to each destination, the average rank for each desti-
nation would be 5.5. A t-test rejects the null of equality of means for Gothenburg and Düsseldorf,
with average ranks of 4.8 and 6.4 (p = 0.017 and p = 0.003) and fails to reject the null for all others.
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4.2 Construction of individual preference orderings

Combining the ranking and valuations Having presented aggregate data on the

ranking of trips and valuations, I now combine this ordinal and cardinal information

to construct a first preference relation ⪰ on X for each respondent (further refined in

the next paragraph). Since monotonicity of valuations with respect to the ranking was

not strictly enforced, a respondent could have in principle entered a higher valuation

for a destination ranked lower. Indifferences could also be expressed by entering the

same valuation for two destinations. For any two trips xj and xk with xj ranked

above xk (j < k), I thus construct ⪰ as: (i) xj ≻ xk if vj > vk; (ii) xj ∼ xk if vj = vk;

(iii) xj ▷◁ xk if vj < vk.

Adding the binary choice data In addition to the ranking and valuations,

respondents made direct choices between two destinations in 6 DPs: {x1, x2}, {x1, x3},
{x2, x3}, {x1, x5}, {x1, x10}, {x5, x10}. Although not all binary comparisons could be

examined, data on these 6 comparisons allows to account for possible classification

errors on B+∪B− i.e., the vast majority of DPs. I combine this data with information

on ⪰ to construct a second relation ⪰∗ that accounts for possible inconsistencies

between the ranking and direct choices and is thus more incomplete. More precisely:

(i) xj ≻∗ xk if [xj ≻ xk] ∩ [xj chosen from {xj, xk}]; (ii) xj ∼∗ xk if xj ∼ xk; (iii)

xj ▷◁
∗ xk if xj ▷◁ xk or [xj ≻ xk] ∩ [xk chosen from {xj, xk}].

Result 1. The number of inconsistencies between the various preference measure-

ments is low, as is the number of indifferences expressed.

Table 4 presents the breakdown of preferences (⪰,⪰∗) on X. Over 80% of com-

parisons between two destinations (xj, xj+1) adjacent in the respondent’s ranking

involve a strict preference (vj > vj+1). Indifferences represent 12% of comparisons,

while valuations conflict with the ranking in only 4% of comparisons. Overall, 52%

of respondents have a strict ordering ≻ on X. The ranking and valuations never con-

tradict each other for 88% of respondents. Binary choices are also highly consistent

with ⪰, as inconsistencies occur only about 8% of the time. In total, nearly 80% of

respondents provided preference information that is fully consistent across all types

of measurements (▷◁∗= ∅); see Appendix B.3 for more information.
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Table 4: Breakdown of preferences (⪰,⪰∗) on X

Preference xj ≻ xk xj ∼ xk xj ▷◁ xk xj ⪰∗ xk
% comparisons with k = j + 1 84.1 12.1 3.9 92.2

(frequency) (628/747) (90/747) (29/747) (153/166)

% comparisons overall 91.4 4.3 4.3 91.8
(frequency) (3415/3735) (161/3735) (159/3735) (457/498)

Notes: xj ≻ xk (resp. xj ∼ xk) means that xj ranked above xk and vj > vk (resp. vj = vk); xj ▷◁ xk
means that xj ranked above xk and vj < vk; finally, xj ⪰∗ xk means either (i) xj ≻ xk and xj chosen
from {xj , xk} or (ii) xj ∼ xk. Total number of binary comparisons is |X|(|X|−1)/2×N = 45×83 =
3735; total number of comparisons between two adjacent options (k = j + 1) is 9 × 83 = 747. For
the last column, there are 6 DPs {xj , xk} (including 2 DPs {xj , xj+1}); therefore, the denominator
is 2× 83 = 166 at the top and 6× 83 = 498 at the bottom.

5 Violations of stochastic dominance

Having constructed preferences over destinations, I now examine stochastic domi-

nance (SD) violations in the binary decision problems. First, I study the overall

prevalence of these violations at the individual level. Second, I assess their size by

computing the implied monetary cost. Third, I examine their shape by assessing their

compatibility with the monotonicity properties presented in Section 2.1.

Computation of SD violations Before proceeding, I explain how I calculate for

each respondent the total number and fraction of SD violations on D+ (all domi-

nated lotteries), B+ (dominated lotteries with two outcomes) and B− (corresponding

dominant lotteries).21 To avoid overestimating the prevalence of SD violations (i.e.,

making Type I errors), I apply the strictest possible classification given the available

data. First, I identify a subset of clear dominance problems for each respondent by

relying on the most coarse relation ⪰∗. More precisely, for any DP d between a sure

option xi and a lottery p: (i) d ∈ D+ (or B+) if xi ⪰∗ x for all x ∈ supp(p) and

xi ≻∗ x for some x ∈ supp(p); (ii) d ∈ B− if x ⪰∗ xi for all x ∈ supp(p) and x ≻∗ xi

for some x ∈ supp(p). I then calculate the number and fraction of violations only on

this subset of clear dominance problems.22 As this procedure generates more Type II

21When presenting aggregate statistics that contrast behavior on B+ vs. B−, I restrict attention to
the subset of 11 problems in B+ with a symmetric counterpart in B− so as to maximize comparability
(thus removing problems {x1, (x1, p;x5, 1− p)} and {x1, (x1, p;x10, 1− p)} for p ∈ {0.1, 0.9}).

22As inconsistencies across preference measurements are quite rare, the number N∗ of clear domi-
nance problems is simply equal to the total number of DPs for 80% of respondents. However, N∗ = 0
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errors, Appendix B.3 presents statistics for a classification based only on the ranking,

thus providing upper and lower bounds.

5.1 Prevalence of SD violations

Result 2. On average, respondents violate stochastic dominance in favor of random-

ization in about 25% of decision problems on B+ (22% on D+) vs. 16% of problems

on B− i.e., in favor of certainty. However, individual heterogeneity is large.

Figure 3 presents quantile plots of respondents’ number (left panel) and fraction (right

panel) of SD violations for decision problems in D+, B+ and B−. Each dot repre-

sents a respondent. On D+ (B+), 29% (39%) of respondents never violate stochastic

dominance, while the top 20% do so at least 46% (50%) of the time (≥ 9 (5) viola-

tions), thus revealing a strong preference for randomization. On B−, respondents are

Figure 3: Prevalence of SD violations at the individual level
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Notes: Quantile plots of the number (left panel) and fraction (right panel) of SD violations for each
respondent on D+ (all 24 dominated lotteries), B+ (subset of 11 dominated lotteries), and B− (11
dominant lotteries), defined according to ⪰∗. N = 83 for left panel and N = 79 for right panel.

for 4 respondents with fully contradictory measurements; thus N= 79 for the fraction of violations.
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generally less inclined to violate stochastic dominance, with 62% always selecting the

dominant lottery; however, the top 20% still exhibit violations in favor of certainty

at least 30% of the time (≥ 3 violations). Overall, violations occur more frequently

in favor of randomization than certainty, with a near first-order stochastic dominance

relationship between the distributions on B+ vs. B−.23

Result 3. Respondents who violate stochastic dominance in favor of randomization

are less likely to exhibit violations in favor of certainty and vice versa, suggesting the

two types of violations reflect largely distinct phenomena.

Figure 4 contrasts respondents’ propensity to violate stochastic dominance in each

direction. Over 80% of respondents are on one of the axes, meaning that they exhibit

at most one type of SD violations. The rank-order correlation between violations on

B+ vs. B− is negative at about −0.3 (p < 0.01).

Figure 4: Relationship between SD violations on B+ vs. B−
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Notes: Scatter plot of the number (left panel) and fraction (right panel) of violations on B+ vs.
B−, with the bubble size proportional to the number of respondents. The red line is from a linear
regression between the two variables (left panel: β̂ = −0.29, s.e.= 0.11; right panel: β̂ = −0.30,
s.e.= 0.10). N= 83 for left panel and N= 79 for right panel. *** p < 0.01.

23A Kolmogorov-Smirnov test rejects that the two distributions are the same both for the number
(p = 0.04) and fraction (p = 0.03) of violations. A t-test of equality of means yields p = 0.11 for
the number of violations (2.3 vs. 1.6) and p = 0.04 for the fraction of violations (0.25 vs. 0.16).
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Table 3: Typology of respondents

Number of SD violations % (N) of respondents

= 0 for all dominance problems 15.7 (13)
> 0 for dominated lotteries only (D+) 48.2 (40)
> 0 for dominant lotteries only (B−) 16.9 (14)
> 0 for both dominated and dominant lotteries 19.3 (16)

Notes: On the subset of two-outcome lotteries B+ ∪ B−, 42% (20%) of respondents only violate
stochastic dominance for dominated (dominant) lotteries and 22% fully respect stochastic dominance.

As shown in Table 3, 48% (17%) of respondents only violate stochastic dominance

when lotteries are dominated (dominant) and 16% fully respect stochastic dominance.

Importantly, if noise was a predominant factor, the correlation between the two types

of violations should be either positive or zero.24

Link to randomization decisions in the design task Since choosing a lottery

over a sure destination entailed no extra monetary or effort cost in the binary choice

exercise, respondents who were indifferent could have chosen either option.25 To assess

the robustness of randomization decisions, respondents were also directly offered to

design their own lottery or select a sure destination instead. Designing a lottery took

several steps and was therefore more time-consuming than selecting a sure destination.

In total, 55% chose to design a lottery as their favorite option.26 This number is in

the same ballpark as the proportion of respondents who revealed a preference for

randomization in the binary choice exercise (see Table 3). Furthermore, the two are

related: those who chose to design a lottery were significantly more likely to exhibit

SD violations on B+ and significantly less likely to do so on B− (see Section C.3).

24To investigate this, I simulated 4 stochastic choice benchmarks described in Appendix E. The
first two assume a fixed probability of mistake at each DP, which is either homogeneous (Benchmark
1) or heterogeneous (Benchmark 2) across respondents (fixed error models). Benchmark 3 assumes
that respondents have a noisy perception of the valuation of each trip, with the noise varying at
each DP (random valuations model). Benchmark 4 assumes expected utility with additive shocks
at each DP (random utility model). In all cases, I pick the noise to roughly match the proportion
of preference reversals observed in DPs involving two sure destinations (≈ 10%), and assess the role
of sampling error by simulating 1,000 datasets. The median correlation between the two types of
violations is positive and large for Benchmarks 2, 3 and 4 and close to zero for Benchmark 1.

25For instance, choosing (x1, 0.5;x2, 0.5) over x1 only implies (x1, 0.5;x2, 0.5) ⪰ x1, strictly-
speaking; nevertheless, such a choice implies a violation of stochastic dominance if x1 ≻ x2.

2615% chose to build a lottery only after being offered to customize the date at which to learn
the destination, while 40% chose to build a lottery even with a fixed delay of one week before travel.
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5.2 Size of SD violations

Even if they are quite prevalent, SD violations would be of low importance if they

happened to be negligible in size. For each DP at which a violation occurred, one can

assess this by comparing a respondent’s value for the sure destination (Option A) to

the expected value of the lottery (Option B).

Result 4. The observed SD violations are economically significant. On average,

respondents were willing to sacrifice £41 across all problems at which a violation

occurred, or about 10% of the market value of a trip.

Figure 5 presents violin plots of the monetary loss |v(xA)−Ep[v(xB)]| for each type of

DP. The mean loss was £46 for violations on D+, £33 on B+, and £29 on B−. The loss

distributions exhibit a large spread, reflecting heterogeneity across respondents and

DPs. Given the large positive skew, median losses are smaller, but remain sizable (£32
on D+, £25 on B+, and £18 on B−). Although violations in favor of randomization

appear slightly larger in size, the differences in monetary loss for SD violations on B+

vs. B− are not statistically significant.

Figure 5: Expected value difference with the sure option (in £)
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Notes: Violin plots of the difference in monetary value between Options A and B, |v(xA)−Ep[v(xB)]|,
for all DPs in which a respondent violated stochastic dominance on (i) D+ (all dominated lotteries;
N= 369); (ii) B+ (subset of dominated lotteries; N= 194); (iii) B− (dominant lotteries; N= 136). In
each plot, the white dot corresponds to the median, the box to the interquartile range, and the spikes
extend to the upper- and lower-adjacent values. Differences above £150 were removed for visibility
(11 observations for “Dominated lotteries (all)” and 1 observation for “Dominant lotteries”).
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Among respondents who designed a lottery as their favorite option, the average mon-

etary loss relative to the highest-valued destination is £49 (≈ 12% of value), very

close to the average loss on D+. In sum, randomization decisions have non-trivial

monetary implications.

5.3 Shape of SD violations

I now examine the shape of violations by assessing their compatibility with the mono-

tonicity properties defined in Section 2.1.

Result 5. The observed SD violations have a specific structure: dominated lotteries

are more likely to be chosen when they have a higher entropy, in violation of P-MON;

on the other hand, they are less likely to be chosen when they contain lower-ranked

options i.e., X-MON is globally respected.

Fixing the support, Figure 6 shows how the propensity to choose a dominated lottery

depends on the probability p of its higher-ranked outcome. While P-MON would

dictate a (weakly) lower proportion of SD violations as p goes down, respondents

were generally more likely to choose the dominated lottery for p = 0.5 than p = 0.9.

Most strikingly, while 53% of respondents preferred the lottery (x1, 0.5;x2, 0.5) to x1,

only 35% preferred (x1, 0.9;x2, 0.1) to x1.
27 On the other hand, respondents were

significantly less likely to choose the lottery for p = 0.1 compared to p ∈ {0.5, 0.9},
when lowering p does not increase outcome uncertainty.28 An individual-level analysis

confirms the aggregate patterns: 37% of respondents violated P-MON at least once,

and 81% of P-MON violations occurred when moving from p = 0.9 to p = 0.5.

Fixing the probability p, Figure 6 also allows to examine violations of X-MON.

Respondents’ propensity to choose the dominated lottery decreases monotonically as

a given destination is replaced with a lower-ranked outcome in the lottery. In other

words, SD violations occur in a way that satisfies X-MON. This property continues

to be globally satisfied for lotteries with larger supports (Figure B3). In total, 72%

of respondents never violate X-MON (85% do so at most once).

27A two-sample test of proportions yields p = 0.03. While differences for the other DPs are not
individually significant, the pooled difference of 6.7 percentage points is significant at p = 0.02 in a
regression of lottery choice on probability indicators (with p = 0.9 as the reference category), with
standard errors clustered at the respondent level.

28The pooled differences of 17.3 and 10.5 percentage points with respect to p = 0.5 and p = 0.9
are statistically significant at p < 0.001 in a regression of lottery choice on probability indicators.
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Figure 6: Proportion of SD violations on B+ as a function of p
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Notes: Each bar corresponds to the proportion of respondents who violated stochastic dominance
in problem {xi, (xj , p;xk, 1− p)} for p ∈ {0.1, 0.5, 0.9} (clear dominance problems only). See Table
B3 for the number of respondents in each bar.

Taken together, these findings are inconsistent with Uα,Ψ-representations such that

Ψ(p,v) = ψ(
∑n

k=1 pk(vk − Ep(v))
2) (a mean-variance model would violate X-MON)

or Ψ(p,v) = ψ(|supp(p)|−1) (a mean-support model would satisfy P-MON). On the

other hand, they are consistent with models requiring that Ψ(p,v) = ψ(H(p)) where

H is a valid measure of uncertainty (e.g., Shannon entropy, residual variance) and ψ

is not weakly concave (see Section 2.2).

To investigate this further, I now examine the design decisions of respondents who

chose to build a lottery when offered the option. The median respondent included 4

destinations in the support, with only 9% of respondents choosing a lottery with full

support (all 10 destinations). Respondents tended to design high-entropy lotteries:

normalizing the entropy measure so it lies between 0 and 1 regardless of the size of

the support (i.e., with H( 1
n
, ..., 1

n
) = 1 for all n > 1) gives a mean entropy value of

0.88. Importantly, consistent with a DM trading off a higher entropy with a lower

expected realization, respondents generally built negatively-skewed lotteries: 59%

assigned a higher probability weight to higher-ranked options, with a mean skew of

−0.75 (significantly different from 0 at p = 0.006). Overall, the findings from the

design task are very much in line with those from the binary choice exercise (see

Appendix C.1 for more details).
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Figure 7: Proportion of SD violations on B+ vs. B−
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Notes: The dark vs. light gray bars correspond to the proportion of respondents who violated
stochastic dominance on B+ vs. B− (clear dominance problems only). See Table B3 for the number
of respondents in each bar.

Result 6. Violations of stochastic dominance have a different shape for dominated

vs. dominant lotteries. In particular, violations in favor of certainty are more likely

to occur at near certainty i.e., for low-entropy lotteries.

Figure 7 presents the proportion of SD violations for each problem in B+ (dominated

lotteries) paired with its symmetric counterpart in B− (dominant lotteries). While

preference for randomization generally dominates, respondents were more inclined to

express a preference for certainty for lotteries with a low probability of the higher-

ranked outcome. For example, 31% of respondents preferred x2 to (x1, 0.1;x2, 0.9),
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compared to only 18% who preferred (x1, 0.1;x2, 0.9) to x1. Violations in favor of the

sure outcome happen more often for p = 0.1 than for p = 0.5, that is, making the

outcome more uncertain does not lead to a stronger preference for certainty. These

differences in the shape of violations again suggest that preferences for randomization

vs. certainty reflect different phenomena.

6 Interpretation of violations

Having documented the existence of SD violations, I now turn to the interpretation

of these violations. The main explanation proposed is that violations in favor of

randomization emerge because of the anticipatory utility benefits of surprises. In this

section, I study support for this conjecture and alternative drivers of randomization

behavior by combining a set of empirical facts on potential mechanisms (Section 6.1)

with a discussion of theories that could rationalize the evidence (Section 6.2).

6.1 Empirical evidence on potential drivers

6.1.1 Preferences for delaying the resolution of uncertainty

Result 7. Among respondents who designed a holiday trip lottery as their favorite

option, about three quarters preferred to postpone learning about their destination and

the majority were willing to pay for this option.

Although the option of learning today was listed first, 74% of respondents preferred

to maintain the surprise of the destination for 48 hours or more. Conditional on

preferring a delay, the mean delay was 94 days (s.d. = 104 days), with chosen delays

covering an average of 54% (s.d. = 44%) of the distance to the anticipated travel

date. The chosen delays vary greatly, however, with respondents balancing the costs

and benefits of maintaining uncertainty in different ways (Figure C2).

Many respondents sacrificed money for these non-trivial delays. In particular,

74% of the respondents who set a delay had a positive willingness to pay to learn on

their chosen date instead of right away. Overall, this means that 54% of those who

built a lottery (and 30% of all respondents) were willing to give up at least £5 for

the delay option (Figure C3). Among them, the mean WTP for delay was £15.74,
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Figure 8: SD violations for monetary vs. holiday trip lotteries
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Notes: The light vs. dark gray bars correspond to the proportion of SD violations for the trip vs.
monetary lotteries (clear dominance problems only). The p-value in a two-sample test of proportions
for trips vs. money is p < 0.001 (top), p = 0.11 (middle) and p < 0.001 (bottom). See Table B3 for
the number of respondents in each bar.

amounting to 5.8% of the expected value of the lottery they designed.29

6.1.2 Do violations survive in the world of money?

Result 8. When the trip destinations are replaced in the surprise lotteries by their

monetary valuations, SD violations almost entirely disappear.

To test whether violations survive in the world of money, respondents were asked to

consider 3 DPs that were identical to those presented earlier, except for one difference:

each trip destination xk was replaced by the respondent’s valuation vk for that des-

tination. In other words, the prizes were monetary payments to be sent on the date

at which the respondent had planned to travel and, for the lottery option, with the

prize revealed one week before payment.30 As shown in Figure 8, violations almost

completely vanish for money. While over 50% of respondents chose (x1, 0.5;x2, 0.5)

29WTP for delay is also positively correlated with the fraction of SD violations on D+ (Spearman
ρ = 0.34, p = 0.023, N = 46), but not with other measures of SD violations.

30The 3 DPs were: (i) A: (x1, 1) vs. B: (x1, 0.5;x2, 0.5); (ii) A: (x2, 1) vs. B: (x1, 0.5;x2, 0.5)
and (iii) A: (x1, 1) vs. B: (x1, 0.2;x2, 0.2;x3, 0.2;x4, 0.2;x5, 0.2) (with xk replaced by vk). In
case v1 ≤ v2, I replaced (v1, v2) with (400, 350) in the first two DPs and (v1, v2, v3, v4, v5) with
(400, 370, 350, 320, 300) in the last DP. To make one-to-one comparisons, I discard respondents for
whom v1 ≤ v2, and more generally, those for whom the DP in question was not a clear dominance
problem. Numbers are very similar when pooling all respondents.
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over x1, only 4% chose (v1, 0.5; v2, 0.5) over v1. Delay of the resolution of uncertainty

is thus not a sufficient condition for preference for randomization (or certainty); the

domain of randomization appears to play a major role (see Section 6.2).

6.2 Competing theories

I now bring all the facts presented in this paper to discuss their compatibility with

various classes of theories.

6.2.1 Surprise enjoyment and anticipatory utility

The leading hypothesis of this paper is that people may violate stochastic dominance

to enjoy the surprise of some pleasurable outcome. In support of this interpretation,

I find that (i) when considering trips, preference for randomization overall dominates

preference for certainty, with the two being distinct (Results 2, 3, 6); (ii) randomiza-

tion is more frequent for higher-entropy lotteries, increasing scope for surprise (Result

5); (iii) randomization decisions tend to come with a preference for delayed resolution

of uncertainty (Result 7); (v) preference for randomization disappears when replacing

trips with equivalent monetary amounts (Result 8).

Surprises may create enjoyment for at least two reasons. First, uncertainty about

the destination creates thrill and excitement ahead of the resolution of uncertainty

(e.g., the anticipated pleasure of opening the envelope). Second, uncertainty offers the

possibility to daydream about different worlds. In line with this, when asked about

their motives, a majority of respondents with a favorable view of surprise trips ranked

either the excitement until the destination is revealed or the possibility of daydreaming

as the #1 factor (out of a list of six - see Appendix D.2). Furthermore, these concerns

are positive predictors of SD violations for dominated lotteries and valuations of the

wildcard trip (Appendix D.1). Given the difference observed for trips vs. money,

below I form conjectures on the necessary conditions for randomization behavior.

Outcome valence An important characteristic of holiday trips is that they are

pleasurable events, which people typically enjoy thinking about. One conjecture is

that surprise enjoyment (α > 0) requires outcomes to have positive valence. In other

words, preference for randomization should vanish for goods or experiences that trig-

ger negative emotions (e.g., a medical appointment), possibly replaced by a preference
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for certainty (α < 0). The effect of surprise should also disappear for ordinary goods

that have neutral valence (e.g., laundry detergent), for they fail to trigger emotions

(α = 0). When presented abstractly, monetary payments likely belong to this cat-

egory. An open question is whether violations would occur more often with cash if

people first contemplated what they might do with various sums of money: while

the psychological investment might trigger an emotional response, its effect might be

limited in the absence of a commitment to purchasing the contemplated goods.

Outcome valence has been found to play a role in many areas of decision-making.

For instance, people may prefer for negative (vs. positive) consumption events to

occur earlier (vs. later) due to anticipatory utility concerns (Loewenstein, 1987).

Similarly, they usually prefer to savor good news and ignore bad news (Golman, Hag-

mann, and Loewenstein, 2017; Golman, Loewenstein, Molnar, and Saccardo, 2022).

To account for the importance of valence, a range of theories have put forward the

role of emotions triggered by the attention devoted to possible outcomes. In the con-

text of risk, Rottenstreich and Hsee (2001) propose that affect-rich and affect-poor

outcomes are compared differently depending on whether their occurrence is certain

or uncertain, because uncertainty triggers stronger emotional responses (e.g., hope of

gain and fear of loss) for hedonic goods than utilitarian goods.31 More recently, Bolte

and Raymond (2022) consider a model in which attention has both an instrumental

and an emotional value, such that the DM chooses to deploy more attention towards

higher-payoff outcomes in order to raise their “attention utility”.

Outcome multidimensionality The positive valence of outcomes might be a nec-

essary but not sufficient condition for preference for randomization. After all, if the

DM enjoys dreaming about a given outcome, offering certainty will allow them to

fully specialize in the contemplation of this outcome. Thus, it appears important

that (i) each outcome presents something pleasant to think about (no dominance

across attributes); (ii) the DM derives utility from entertaining diverse possibilities

(variance in attributes). Supporting this conjecture, Buechel and Li (2022) find that

preference for “mysterious consumption” disappears when there is no variance in the

type of good (e.g., gift certificates to two bookstores) or there is a clear ordering on

quality. In line with this, the proposed trips offered a range of experiences at the

31For instance, the authors find that even if two coupons to cover university tuition vs. go on a
European trip are equally valued, a 1% chance of the European trip coupon is more highly valued
than a 1% chance of the tuition coupon.
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same market value, creating both variance and no obvious dominance (Section 4.1).

Surprises open information gaps (Golman and Loewenstein, 2018; Golman, Gur-

ney, and Loewenstein, 2021), which creates wonder by opening new questions on

a pleasurable topic (e.g., will I go to the beach or the mountains?). By contrast,

committing to a sure outcome greatly constrains the variety of dreams that can be

entertained. If there are diminishing returns to constantly dreaming about the same

place, the DM might spend more time dreaming about trips with more upside, but do

some balancing so as to avoid boredom. Such a model would generate the preference

for negatively-skewed lotteries observed in the experiment. As another implication of

this theory, randomization behavior should go down if people are presented abstractly

with the choice between (4* hotel 1, beach 1) and a lottery over (4* hotel 1, beach

1) and (4* hotel 2, beach 2), which limits the mind’s exploration.

6.2.2 Decision noise and inability to choose

Evaluating (lotteries over) holiday trips is an unusual task, which begs the question:

do violations simply reflect mistakes and/or an inability to decide?

Decision noise While decision noise is unavoidable in such an experiment, multiple

reasons suggest that it cannot be the primary factor behind the observed violations.

First, respondents reported preferences over destinations in a consistent manner across

elicitation methods, suggesting they could evaluate the trips coherently. Second,

SD violations were computed only on the subset of clear dominance problems, thus

minimizing the chances of Type I error. Third, violations have a specific structure

e.g., those in favor of randomization occur more often for high-entropy lotteries.

Forth, the correlation between SD violations on B+ and B− is negative, with each

type reflecting a different psychology. Importantly, none of the standard stochastic

choice models (fixed error model, random valuations, random utility) would predict P-

MON violations, and they would produce either a positive or zero correlation between

violations of each type (Appendix E). Finally, while revealed perturbed utility models

(Fudenberg, Iijima, and Strzalecki, 2015) could produce the observed violations for a

carefully chosen cost function, they make no predictions about preference for delay.

Inability to decide and choice delegation One possibility is that respondents

chose the trip lotteries to resolve their indecisiveness (Agranov and Ortoleva, 2017).
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However, if a randomization device was needed to help them decide, they could have

simply selected the sure option in each DP and let the random incentive system make

the final selection. Indeed, the problems were presented in alternating order, with

the sure option being dominant in one case (e.g., x1) and dominated in the next case

(e.g., x2). Achieving randomization in this way was easy because all problems were

evaluated on the same page. Importantly, randomizing across (instead of within) DPs

offered the benefits of randomization without the cost of learning the destination with

a long delay. Despite this, no respondent reported adopting this strategy. In addition,

those who viewed surprise trips favorably ranked their ability to delegate the decision

as one of the least important reasons for liking the lotteries (Figure D4). Finally,

models of incompleteness would need to explain (i) why randomization behavior is

associated with a preference for delay and (ii) why respondents generally preferred

negatively-skewed lotteries (suggesting a preference for higher-ranked outcomes).

6.2.3 Non-standard preferences for risk and uncertainty

Having discussed stochastic choice (whether deliberate or due to mistakes), I now

examine deterministic theories of choice under risk, which may generate SD violations.

Utility from gambling The most straightforward approach is to assume that peo-

ple derive utility from the act of gambling per se, and use a different utility function

to evaluate certain and uncertain outcomes. Assuming a discontinuity at certainty as

in Diecidue, Schmidt, and Wakker (2004) can generate SD violations in favor random-

ization. However, without making further assumptions, these models cannot explain

(i) why violations occur for trips but not money; (ii) why they sometimes happen

for (x1, 0.5;x2, 0.5) but not for (x1, 0.9;x2, 0.1). In fact, because Diecidue, Schmidt,

and Wakker (2004) maintain the independence axiom over the set of risky gambles,

(x1, 0.9;x2, 0.1) ≻ (x1, 0.1;x2, 0.9) would imply (x1, 0.9;x2, 0.1) ≻ (x1, 0.5;x2, 0.5) i.e.,

P-MON must be satisfied.

Non-linear probability weighting The class of representations in this paper posit

that the DM correctly perceives probabilities. While this is a restriction, probability

weighting appears insufficient to explain the evidence. First, for SD violations to be

generated, the weights π̃k on each xk must be such that
∑

{k : xk ∈ supp(p)} π̄k ̸= 1,

which immediately rules out models of rank-dependent probability weighting (Quig-
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gin, 1982; Tversky and Kahneman, 1992). Second, although simple non-linear proba-

bility weighting as in Kahneman and Tversky (1979) (without an editing stage) could

rationalize (x1, 0.5;x2, 0.5) ≻ x1 ≻ x2 for π(0.5) > 0.5, this requirement would violate

subcertainty (π(p) + π(1 − p) < 1 for all p), a property necessary to generate the

Allais Paradox. Third, even allowing for this, existing parametrizations (as listed in

Stott (2006)) are not flexible enough to accommodate the observed P-MON viola-

tions. Fourth, a model with probability distortions would need to assume outcome

dependence to rationalize the absence of violations when using money.32

Disappointment and regret Models of expectation-based reference dependence

such as the Kőszegi and Rabin (2007) CPE model or the models of disappointment

aversion of Bell (1985) and Loomes and Sugden (1986) can generate SD violations in

favor of randomization (including P-MON violations) only if λ < 0; this assumption

would contradict the empirical evidence on loss aversion and also generate violations

of X-MON, which are not observed in the data.33 Furthermore, data on self-reported

motives suggests that disappointment and regret are at best secondary determinants

of positive attitudes towards surprise trips; instead, disappointment emerges as the

leading factor among those who dislike the trip lotteries (Appendix D.2).

Ambiguity aversion and hedging One could treat a trip xj as a Savage act

{fj(ω)}ω∈Ω, yielding a different payoff in each state of the world ω ∈ Ω. The surprise

trips in the experiment could thus be conceived as compound lotteries mixing layers

of objective and subjective uncertainty. In such a framework, a DM might randomize

due to hedging motives e.g., if they hold multiple priors π ∈ ∆(Ω) and believe nature

or the experimenter to be adversarial in the sense of Gilboa and Schmeidler (1989).

Such a DM might say pfj + (1 − p)fk ≻ fj ≻ fk provided that fj(ω) > fk(ω) and

fk(ω
′) > fj(ω

′) for some ω, ω′ ∈ Ω (no statewise dominance of one act). However,

such a model cannot generate the P-MON violations observed; furthermore, self-

reported mistrust in the experiment is low overall and does not predict preferences for

randomization or delay (Appendix F.4). In addition, if respondents simply wanted to

32Even models in which distortions come from motivated beliefs such as the wishful thinking
model of Caplin and Leahy (2019) will typically satisfy stochastic dominance.

33In fact, Masatlioglu and Raymond (2016) show that the Kőszegi and Rabin (2007) CPE model
with quadratic gain-loss utility admits an equivalent mean-variance representation; such a represen-
tation violates X-MON as discussed in Section 2.2 and Appendix F.
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hedge against subjective uncertainty, choosing the risky lotteries should be associated

with a lower valuation of the wildcard trip i.e., a very ambiguous lottery; instead, I

find a (weakly) positive relationship between the two (Appendix D.1).

6.2.4 Other psychological motives

Planning aversion One reason why people might prefer a lottery with delayed

resolution of uncertainty to the guarantee of their favorite destination is that giving

up control lowers the anxiety and pressure of planning the perfect holiday. Instead of

rehearsing the script of their upcoming holiday, planning-averse people might want to

pay not to have to think about it ahead of time. If planning aversion was the primary

driver of randomization decisions, then most respondents should have preferred to

postpone learning about their destination until the last moment. Against this, about

two thirds of the respondents who designed a lottery chose to learn the location at

least 3 weeks prior to departure, thus leaving plenty of time to plan (Figure C2).

Unawareness and forced experimentation Another benefit of letting fate de-

cide on the destination is the chance to encounter situations that one would have never

chosen to enter spontaneously. In other words, randomization offers a commitment

to novelty and experimentation, thus creating unexpected opportunities to learn and

challenge one’s prior beliefs. Wildcard trips are extreme versions of that: they are

not only ambiguous lotteries, but they entail an element of unawareness, maximiz-

ing the potential to be pleasantly surprised by an unexpected experience. Data on

self-reported motives provides suggestive evidence in this direction (Appendix D).

7 Discussion

This paper studies whether people may violate stochastic dominance in favor of ran-

domization in order to enjoy the anticipatory utility benefits of surprises. I generate

the evidence using experiential goods that typically trigger a lot of anticipation i.e.,

holiday trips. The opportunity for surprise is operationalized by creating risky lot-

teries over destinations with a delayed resolution of uncertainty. I study how people

compare various trip lotteries to the guarantee of a better (or worse) destination.

I find that violations occur on average about 20% of the time, but with signifi-

cant heterogeneity across respondents. Preference for randomization and preference
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for certainty appear to be largely distinct phenomena, with the former somewhat

dominating the latter in this context. Violations have a specific structure e.g., the

choice of dominated lotteries is more frequent if they have a high entropy, a finding

which cannot be simply rationalized by noise. Results from a lottery-building exer-

cise show that those who randomize generally prefer to postpone the resolution of

uncertainty. Finally, violations almost entirely disappear in a control task in which

each trip is replaced by its corresponding valuation, suggesting that the experiential

and/or multidimensional nature of the good might be an important precondition for

randomization behavior. By stepping outside of traditional domains of inquiry, this

paper raises many new questions. Below I come back to some of the limitations of

this study and articulate intriguing open questions left for future research:

Going from objective to subjective uncertainty The surprise trips in this ex-

periment were restricted to the space of risky lotteries (objective probabilities and

known support). While randomization behavior in this risky setting is predictive of

attitudes towards more radical uncertainty as measured through valuations of a “wild-

card trip,” the correlation is modest in size. An open question is how introducing

ambiguity and/or unawareness of the possible outcomes might affect people’s pref-

erences for surprise goods. Moving away from objective risk raises major challenges

for the quantification of the uncertainty implied by a choice. From a product design

perspective, one interesting question is how to optimally engineer uncertainty about

the various outcomes. Some companies charge for the option to remove certain op-

tions from the set of possibilities, effectively allowing customers to insure themselves

against certain undesirable realizations. One theoretical question is what the optimal

insurance mechanism looks like in such a context.

Timing of the resolution of uncertainty This experiment only considers one-

shot resolution of uncertainty with some fixed delay (i.e., no earlier than one week

before travel). When offered the possibility to customize the delay, respondents ex-

hibit highly heterogeneous preferences and many are willing to give up money for

their chosen delay. Interestingly, existing companies rarely offer a delay customiza-

tion option; the findings of this experiment suggest they could charge a premium for

this opportunity. More research should investigate the determinants of chosen delays

such as the distance to the consumption date, the amount of uncertainty to be re-
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solved, or the associated costs and benefits of postponing its resolution. Relative to

one-shot resolution, gradual resolution of uncertainty (e.g., by sending clues) might

boost anticipatory utility by reminding the DM of the upcoming event and stimulat-

ing their curiosity, while minimizing the costs of a lack of preparation. Alternatively,

surprise could be maximized by resolving the uncertainty at a random date, a type

of time lottery (DeJarnette, Dillenberger, Gottlieb, and Ortoleva, 2020).

Preference for randomization vs. certainty While preference for randomiza-

tion overall dominates in the experiment, a non-negligible fraction of respondents do

violate stochastic dominance in favor of certainty. It is also worth noting that the

design was not fully symmetric. Since the goal was to understand the link between

positive surprises and randomization behavior, preference for certainty was examined

only on a subset of problems (two-outcome lotteries). On this subset, preference

for randomization generally dominates, but violations in favor of certainty are more

frequent when the worse outcome has high probability. In addition, the experiment

mostly examined violations for lotteries among higher-ranked destinations, again to

focus on the positive value of surprises; preference for certainty might manifest itself

more strongly for less desirable outcomes e.g., comparing (x10, 1) vs. (x9, p;x10, 1−p).
Beyond, a plausible conjecture is that preference for certainty would dominate for lot-

teries over negative consumption events (i.e., for which WTP < 0) or a mixture of

positive and negative events (e.g., if the DM suffers from loss aversion).

Population prevalence and predictors of heterogeneity The vast majority of

respondents were found to exhibit at most one of the two tendencies to either seek

or avoid uncertainty. One question is whether the two kinds of violations capture

fundamentally distinct personality types who adopt the same attitudes towards ran-

domization across a range of domains (Agranov, Healy, and Nielsen, 2023). As an

alternative, there might be substitution effects e.g., people seeking a surprise adven-

ture to compensate for their lack of experimentation in everyday life. More research

should be conducted to understand the individual characteristics correlated with each

type of behavior and the level of consistency exhibited across decision domains.
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Online Appendix

A Experimental procedures and sample

A.1 Instructions, recruitment, and sample characteristics

The experiment was conducted online using Qualtrics (preview link here); a PDF

of the instructions is also available as a supplemental appendix and on the project

OSF page: https://osf.io/ya7x6/.34 Prospective participants first signed up for

the study by completing a consent form (preview link here) and providing an email

address. Enrollment was on a first-come, first-served basis and capped at 100 respon-

dents. Those who signed up were emailed the survey within 24 hours, together with a

unique ID. In total, 83 finished the survey (13 left the survey with ≤ 20 % completed

and 4 were timed out). Table A1 presents descriptive statistics about the sample.

A.2 Changes in preferences with the spread of the pandemic

The data collection took place in March 2020, at a time of growing travel restrictions

due to the spread of COVID-19. One question is whether preferences for travel and

surprise holidays shifted as a result. While I do not have exogenous variation to give

a causal answer, I exploit natural variation in the survey completion date to shed

some light on this question. On 9 March 2020, Italy was the first country worldwide

to impose a national lockdown, an event which made the consequences of the spread

of the pandemic particularly salient. Coincidentally, it was on this same day that

participants from the LSE lab pool were emailed about the study, generating a spike

in survey completion (45% of responses on that day). Below I examine potential

differences in respondents’ decisions based on whether they completed the survey after

the lockdown announcement of March 9th (i.e., from March 10th onwards, N = 42) or

up to that date (N = 41).35

34Several features of the Qualtrics editor changed since the survey was programmed, implying
minor differences in user experience relative to the survey taken by respondents (e.g., text width,
character alignment, etc.); the text is identical.

35The official announcement of a nationwide lockdown was made by Giuseppe Conte, then Italian
prime minister, at a press conference late on Monday 9 March 2020 (https://www.theguardian.com/
world/2020/mar/09/coronavirus-italy-prime-minister-country-lockdown).

1

https://econresearch.eu.qualtrics.com/jfe/preview/previewId/3518fd13-5f1a-4e9c-82d1-1c867f47d22b/SV_6zA3mMuzYQPQypM?Q_CHL=preview&Q_SurveyVersionID=current
https://osf.io/ya7x6/
https://econresearch.eu.qualtrics.com/jfe/preview/previewId/1ea32061-5794-45ed-9d9f-5cb687579f96/SV_0jsHJrVPPldr6zI?Q_CHL=preview&Q_SurveyVersionID=current
https://www.theguardian.com/world/2020/mar/09/coronavirus-italy-prime-minister-country-lockdown
https://www.theguardian.com/world/2020/mar/09/coronavirus-italy-prime-minister-country-lockdown


Table A1: Sample characteristics

Mean SD Min Max N

Male respondent 0.59 0.49 0 1 83

Age 27.1 7.8 18 50 83

Number of trips abroad in last 12 months 4.0 3.0 0 20 83

Number of EU countries visited in list of 10 4.9 2.2 0 9 83

Time to chosen travel date (in days) 229.7 158.4 23 636 83

Anticipated number of travel partners
None 0.14 0.35 0 1 83
1 partner 0.73 0.44 0 1 83
2 partners or more 0.12 0.33 0 1 83

Recruitment channel
LSE Lab (email) 0.87 0.34 0 1 83
Social media or other ads 0.13 0.34 0 1 83

Survey completed after Italian lockdown 0.51 0.50 0 1 83

Total survey time (in minutes) 44.0 19.7 11 120 83

Notes: Total survey time censored at 120 minutes for one respondent.
Recruitment channel recoded for 9 respondents based on text responses.

Main takeaways A summary of mean differences for a large range of outcome

variables is presented in Table A2. Overall, preferences appear to have remained

stable over the survey time window (5-19 March 2020), with two exceptions: (i) re-

spondents pushed back their anticipated travel date post announcement of the Italian

lockdown; (ii) their preference for preserving the surprise of the destination appears to

have been stronger post-announcement.36 In addition, the trip valuations remained

nearly identically distributed for most destinations (no decrease in valuations post

announcement) and I find no difference in people’s preferences on various holiday trip

criteria (e.g., quietness vs. vibrant atmosphere).

36Preferences for keeping the surprise of the destination remain stronger post-announcement even
after controlling for the anticipated travel date in a regression framework.
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Table A2: Preferences pre- and post-lockdown announcement (March 9th)

Pre- Post- Diff. s.e. N

SD violations in binary choices

Number of violations on D+ 4.0 4.8 -0.8 (1.1) 83
Fraction of violations on D+ 0.18 0.27 -0.09∗ (0.05) 79

Number of violations on B+ 2.3 2.4 -0.1 (0.6) 83
Fraction of violations on B+ 0.21 0.30 -0.09 (0.06) 79

Number of violations on B− 1.4 1.8 -0.4 (0.6) 83
Fraction of violations on B− 0.13 0.19 -0.06 (0.06) 79

Favorite option
Sure destination 0.44 0.45 -0.01 (0.11) 83
Trip lottery with fixed delay 0.39 0.40 -0.01 (0.11) 83
Trip lottery with custom delay 0.17 0.14 0.03 (0.08) 83

Valuation of wildcard trip (in £) 266.7 283.9 -17.3 (29.6) 83

Chose to reveal the destination later 0.61 0.87 -0.26∗∗ (0.13) 46
Length of delay (in days) 29.1 109.6 -80.5∗∗∗ (26.7) 46
Time to chosen travel date (in days) 176.4 281.7 -105.3∗∗∗ (33.0) 83
% delay relative to travel date 23.4 56.6 -33.2∗∗ (12.4) 46
WTP for delay (in £) 5.2 18.0 -12.8∗∗∗ (4.0) 46

Surprise trip like rating (0-100) 52.9 53.6 -0.7 (6.8) 83
Total survey time (in minutes) 43.1 45.0 -1.9 (4.4) 83

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Chose to reveal the destination later is an
indicator = 1 if a respondent chose not to reveal the destination of their favorite lottery right away;
Length of delay (in days) is the number of days the respondent was willing to postpone and
% delay relative to travel date is the amount of delay as a percentage of Time to chosen

travel date (in days). The variable WTP for delay (in £) is the amount of money a respon-
dent was willing to forego to delay learning about the destination of their favorite lottery; it is set
equal to 0 for respondents who preferred not to delay the resolution of uncertainty in the first place
(diff. = −12.2, s.e. = 5.0, p= 0.02 among the 34 respondents who completed the MPL question to
measure WTP). Results qualitatively unchanged when using a Wilcoxon rank-sum test.
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B Preferences ⪰ on X and implied SD violations

B.1 Incentive compatibility of the BDM mechanism

The Becker-DeGroot-Marschak (1964) mechanism (henceforth, BDM) is not incentive

compatible if the DM directly values uncertainty. Depending on the DM’s true valu-

ation v, the bias in the report ṽ will be either positive (for low valuations) or negative

(for high valuations). As a result, the distribution of reports is more compressed than

the true distribution. Below I show this point for Ψ(p,v) =
∑

ω∈Ω pω(1−pω), but the
intuition holds more generally. Let V ∼ U[0,500] be the random compensation. There

are two states of the world: ω1 = “V is less than ṽ” (the DM gets a trip worth v to

them) and ω2 = “V is greater than or equal to ṽ” (the DM gets £V ). The DM solves

max
ṽ∈[0,500]

P{V < ṽ}v + [1− P{V < ṽ}]E[V |V ≥ ṽ] + 2αP{V < ṽ}[1− P{V < ṽ}]

⇐⇒ max
ṽ∈[0,500]

ṽ

500
v +

(
1− ṽ

500

) ∫ 500

ṽ
V
500
dV(

1− ṽ
500

) + 2α
ṽ

500

(
1− ṽ

500

)
The FOC is:

v

500
− ṽ

500
+

2α

500
− 4αṽ

5002
= 0

ṽ = p(α)v + [1− p(α)]250 where p(α) := 1
1+α/125

It follows immediately that ṽ > v ⇐⇒ v < 250. In other words, the bias in reporting

is positive (negative) if the true valuation v is lower (higher) than the midpoint of

the support of the distribution of V . Furthermore, lim
α→0

ṽ = v and lim
α→∞

ṽ = 250,

which is intuitive since reporting £250 gives a 50/50 chance of receiving either the

compensation or the trip and thus maximizes the uncertainty about the prize.

In addition, for most measures of uncertainty considered in this paper, ṽ is a

strictly increasing function of v. In other words, the ranking implied by the distribu-

tion of reports coincides with the ranking that uses the true valuations, and should

also coincide with the ordinal ranking procedure.37

37Assuming α > 0, it can be shown that a sufficient condition for ∂ṽ
∂v > 0 is (i) ∂2Ψ

∂ṽ∂v ≥ 0 and

(ii) ∂2Ψ
∂ṽ2 ≤ 0. Part (ii) is satisfied for all valid measures of uncertainty (concavity in p), while (i) is

satisfied for all measures of uncertainty that do not depend on the distribution of valuations (e.g.,
entropy, residual variance, support); however, this condition is violated for measures such as the
variance in valuations.
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Practical implications and empirical tests If respondents indeed used the elic-

itation procedure as a randomization device, the findings of this paper will understate

the importance of preferences for randomization. Given the compression in the re-

ports induced by the BDM mechanism, the observed SD violations will appear less

dramatic than they truly are (leading to underestimating |α|). I also performed an

empirical test: if respondents with a preference for randomization used the BDM

mechanism as a randomization device, the distribution of reported valuations should

be more compressed for respondents with a higher propensity to violate stochastic

dominance in favor of randomization i.e., there should be a negative relationship be-

tween the prevalence of SD violations on D+ or B+ and the standard deviation of the

reported valuations, std({ṽ1, ṽ2, ..., ṽ10}). Instead, I find that the correlation is in-

significant and, if anything, positive. There is also no relationship between preference

for randomization in the design task and compression in the reported valuations.

B.2 Data on ranking and valuation of the destinations

Figure B1: Average rank and valuation across respondents
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Table B1: Valuations by rank number

Mean SD p25 p50 p75 Min Max N

v1 373.2 88.6 320 400 450 80 500 83
v2 335.5 93.9 300 350 400 10 480 83
v3 310.6 90.3 260 300 380 50 490 83
v4 278.1 100.2 200 290 350 8 454 83
v5 260.8 96.4 190 270 340 7 480 83
v6 242.1 98.9 170 240 320 6 498 83
v7 216.8 100.7 150 200 300 4 485 83
v8 193.6 104.7 120 180 250 3 500 83
v9 174.1 104.5 100 150 240 0 499 83
v10 155.2 105.0 80 135 220 0 475 83

v∗ 275.4 134.4 180 295 400 10 500 83

Notes: Summary statistics about the distribution of valuations entered by respondents for the
holiday trip they ranked in the kth position in their ranking, where k ∈ {1, 2, ..., 10}; v∗ is the
valuation for the wildcard trip. Valuations expressed in £. Market value of each trip equal to £420.

B.3 Preference consistency and prevalence of SD violations

Figure B2: Proportion choosing xk from {xj, xk} when xj ≻ xk
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Notes: The number in square brackets under each bar is the number of respondents with a strict
preference xj ≻ xk (i.e., xj ranked above xk and vj > vk).
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Table B2: Prevalence of SD violations based on ⪰∗ vs. the ranking only

Mean SD p25 p50 p75 Min Max

Number of SD violations on

D+ : using ⪰∗ 4.4 4.9 0 3 7 0 21
using rank 5.0 6.1 0 3 8 0 23

B+ : using ⪰∗ 2.3 2.8 0 1 4 0 9
using rank 3.3 3.5 0 2 6 0 11

B− : using ⪰∗ 1.6 2.8 0 0 3 0 11
using rank 2.1 3.1 0 0 3 0 11

Fraction of SD violations on

D+ : using ⪰∗ 0.22 0.23 0 0.17 0.38 0 1
using rank 0.27 0.28 0 0.17 0.46 0 1

B+ : using ⪰∗ 0.25 0.28 0 0.18 0.45 0 1
using rank 0.30 0.32 0 0.18 0.55 0 1

B− : using ⪰∗ 0.16 0.26 0 0 0.27 0 1
using rank 0.19 0.28 0 0 0.27 0 1

Notes: Summary statistics of the distribution of SD violations at the individual level on D+ (all 24
dominated lotteries), B+ (subset of 11 dominated lotteries), B− (11 dominant lotteries). N = 83.

Figure B3: Proportion of SD violations depending on size of the support
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Table B3: Breakdown of SD violations

n∗ N∗ n∗/N∗ nR NR nR/NR

SD violations on D+ (all dominated lotteries)

x1 vs. (x1, 0.5;x2, 0.5) 39 74 0.53 47 83 0.57
x1 vs. (x1, 0.5;x3, 0.5) 26 72 0.36 36 83 0.43
x1 vs. (x2, 0.5;x3, 0.5) 20 72 0.28 29 83 0.35
x1 vs. (x1, 0.5;x5, 0.5) 13 75 0.17 20 83 0.24
x1 vs. (x1, 0.5;x10, 0.5) 5 78 0.06 9 83 0.11
x1 vs. (x1, 0.9;x2, 0.1) 26 74 0.35 30 83 0.36
x1 vs. (x1, 0.9;x3, 0.1) 21 72 0.29 28 83 0.34
x1 vs. (x2, 0.9;x3, 0.1) 14 72 0.19 22 83 0.27
x1 vs. (x1, 0.9;x5, 0.1) 11 75 0.15 17 83 0.20
x1 vs. (x1, 0.9;x10, 0.1) 6 78 0.08 8 83 0.10
x1 vs. (x1, 0.1;x2, 0.9) 13 74 0.18 19 83 0.23
x1 vs. (x1, 0.1;x3, 0.9) 8 72 0.11 16 83 0.19
x1 vs. (x2, 0.1;x3, 0.9) 9 72 0.13 17 83 0.20
x1 vs. (x1, 0.1;x5, 0.9) 7 75 0.09 14 83 0.17
x1 vs. (x1, 0.1;x10, 0.9) 2 78 0.03 6 83 0.07
x1 vs. (x1, 0.4;x2, 0.4;x3, 0.3) 26 72 0.36 35 83 0.42
x1 vs. (x1, 0.4;x3, 0.4;x5, 0.3) 14 72 0.19 22 83 0.27
x1 vs. (x2, 0.4;x3, 0.4;x4, 0.3) 20 74 0.27 26 83 0.31
x5 vs. (x6, 0.4;x7, 0.4;x8, 0.3) 24 75 0.32 30 83 0.36
x1 vs. (x1, 0.2;x2, 0.2;x3, 0.2;x4, 0.2;x5, 0.2) 27 72 0.38 35 83 0.42
x1 vs. (x1, 0.2;x3, 0.2;x5, 0.2;x7, 0.2;x10, 0.2) 8 71 0.11 15 83 0.18
x1 vs. (x6, 0.2;x7, 0.2;x8, 0.2;x9, 0.2;x10, 0.2) 8 77 0.10 12 83 0.14
x5 vs. (x6, 0.2;x7, 0.2;x8, 0.2;x9, 0.2;x10, 0.2) 16 74 0.22 21 83 0.25
x1 vs. (x1, 0.1;x2, 0.1; ...;x9, 0.1;x10, 0.1) 6 71 0.08 13 83 0.16

SD violations on B− (dominant lotteries)

x2 vs. (x1, 0.5;x2, 0.5) 15 74 0.20 17 83 0.20
x3 vs. (x1, 0.5;x3, 0.5) 10 72 0.14 14 83 0.17
x3 vs. (x1, 0.5;x2, 0.5) 10 69 0.14 13 83 0.16
x5 vs. (x1, 0.5;x5, 0.5) 6 75 0.08 10 83 0.12
x10 vs. (x1, 0.5;x10, 0.5) 3 78 0.04 6 83 0.07
x2 vs. (x1, 0.9;x2, 0.1) 18 74 0.24 21 83 0.25
x3 vs. (x1, 0.9;x3, 0.1) 10 72 0.14 15 83 0.18
x3 vs. (x1, 0.9;x2, 0.1) 7 69 0.10 11 83 0.13
x2 vs. (x1, 0.1;x2, 0.9) 23 74 0.31 25 83 0.30
x3 vs. (x1, 0.1;x3, 0.9) 22 72 0.31 25 83 0.30
x3 vs. (x1, 0.1;x2, 0.9) 12 69 0.17 17 83 0.20

Notes: For each DP d, n∗/N∗ denotes the fraction of SD violations according to the unambiguous
relation ⪰∗ (see Sections 4.2 and 5 for definitions), where N∗ is the total number of respondents for
whom d can be classified as a clear dominance problem and n∗ is the number of respondents who
violated stochastic dominance among them; nR/NR is the fraction of SD violations according to the
ranking i.e., nR is the number of respondents who chose Option B (A) when d ∈ D+ (d ∈ B−).
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C Decisions in the design task

C.1 Characteristics of the favorite option

Chosen destination(s) and probability weights In Part 3 of the survey, re-

spondents were offered to design their own lottery or take a sure destination instead

(see Subsection 3.2.3). Figure C1 presents the characteristics of the option chosen by

each respondent. In total, 55% designed a lottery: 40% (33/83) chose a lottery even

with a fixed delay (group L1) and 15% (13/83) only if the delay could be customized

(group L2). Generally speaking, L1 respondents selected lotteries with more uncer-

tainty than L2 respondents and were willing to sacrifice more in terms of expected

value. Reassuringly, over 90% of those who preferred a sure destination selected the

option they assigned the highest valuation to.38 Among those who built a lottery,

93% (43/46) included their rank #1 destination in the support of their lottery. The

last panel shows that the chosen lotteries tended to exhibit a negative skew.

Figure C1: Characteristics of respondents’ favorite option
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skewness (3rd moment) of the distribution of valuations (lottery decisions only). N = 83.

38In total, 84% (31/37) of the respondents who preferred a sure destination selected the one they
ranked #1. In 3 of the 6 cases where they did not, they in fact selected the option they valued the
most (meaning that the ranking and valuations disagreed).
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C.2 Preferences for delaying the resolution of uncertainty

Chosen delays and WTP for delay Among respondents who built a lottery

(N = 46), Figure C2 shows the distribution of chosen dates for when to reveal the

destination. Figure C3 shows the distribution of WTP for delay among these 46

respondents (left panel) and for the subset of 34 respondents who saw the MPL

question (right panel). There is a positive relationship between amount of delay

chosen and willingness to pay for delay (Spearman ρ = 0.42, p = 0.013, N = 34).

Figure C2: Distribution of chosen delays
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C.3 Preferences in the binary choice exercise vs. design task

Table C1: Prevalence of SD violations depending on favorite option

Sure destination Trip lottery Diff. s.e. N

SD violations on D+

Number of violations 1.4 6.9 -5.4∗∗∗ (0.9) 83
Fraction of violations 0.07 0.34 -0.27∗∗∗ (0.04) 79

SD violations on B+

Number of violations 0.7 3.6 -2.9∗∗∗ (0.5) 83
Fraction of violations 0.08 0.39 -0.31∗∗∗ (0.05) 79

SD violations on B−

Number of violations 2.8 0.7 2.0∗∗∗ (0.6) 83
Fraction of violations 0.27 0.07 0.20∗∗∗ (0.06) 79

Notes: *** p < 0.01. Sure destination refers to respondents who preferred not to build a trip
lottery, while Trip lottery pools respondents who chose to build a lottery (before or after being
offered to customize the delay). For the number (fraction) of violations, N = 37 (35) for the Sure

destination group and N = 46 (44) for the Trip lottery group.

Figure C4: Relationship between binary choices and lottery-building exercise
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D Drivers of preferences for surprise trips

This section presents information on the psychological drivers of respondents’ prefer-

ences for surprise trips (risky lotteries, wildcard trip, and link between the two).

D.1 Preferences for the wildcard trip

Link with risky trip lotteries Respondents who preferred to design a trip lot-

tery typically placed a higher value on the wildcard trip (Figure D1). The average

difference in wildcard valuations between the two groups is £74.1 (95% CI: [17.0,

131.2], p = 0.012).39 The association between wildcard valuation and other measures

of preference for randomization and delay is however generally weak and insignificant

(highest correlation around 0.2, with the fraction of SD violations on D+).

Figure D1: Relationship between wildcard valuation and design choice
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Notes: Distribution of wildcard valuations by whether the respondent designed a trip lottery as their
favorite option (N = 46) or preferred a sure destination (N = 37); the left panel shows valuations in
pounds and the right panel as a ratio relative to the highest valuation maxk vk assigned to the 10
known destinations. The p-values are from Kolmogorov tests of equality of distributions. N = 83.

Motives After entering their valuations, respondents were asked to rate their agree-

ment with various potential reasons for their preferences. Figure D2 shows that hoping

39The average difference is £64.6 (p = 0.043, 95% CI: [2.1, 127.2]) if one restricts attention to the
set of respondents who had a clear preference for x1 relative to all the other options (i.e., for whom
x1 ≻∗ xj for all j ∈ {2, 3, ..., 10}).
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Figure D2: Determinants of wildcard valuation
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Notes: Left panel: Two-limit Tobit regressions of wildcard trip valuation v∗ (in £) on each of 7
ratings (where 1 = “completely disagree” and 5 = “completely agree”) entered separately; right
panel: univariate linear regression of the ratio v∗/maxk vk (where maxk vk is the highest trip
valuation that the respondent entered for the 10 destinations) on each rating separately. N = 83.

for a better destination has no predictive power, but fear of a worse destination does:

a one-point increase in agreement with the statement “I feared I would get a trip I

like less than the other destinations” is associated with a £49.6 decrease (95% CI:

[-73.6, -25.7]) in valuations on average. In terms of positive factors, the ability to

fantasize about different worlds and the thrill of seeing how risk will play out appear

to be the strongest predictors, with a £48.6 increase (95% CI: [27.3, 69.9]) on average

for the former, and a £48.0 increase (95% CI: [23.8, 72.1]) for the latter.40

Link with SD violations I also examined whether the motives underlying valu-

ations of the wildcard trip underpin randomization behavior for risky lotteries. Pre-

dictors are very similar overall as shown in Figure D3.

40The various ratings tend to be highly correlated, with most correlations in the range [0.4,
0.6], at the exception of “Hoped for better destination,” which is not correlated with any of the
other factors. Putting all these factors in a multivariate regression produces some counterintuitive
findings (positive and significant coefficient on “Can only dream if know destination”) and, at the
exception of “Feared worse destination,” the estimated effects for the other reasons are non-robust
and sometimes depend on the choice of outcome variable (v∗ or v∗/maxk vk).
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Figure D3: Link between motives for the wildcard and SD violations

Hoped for better destination  

Feared worse destination  

Having no clue helps to fantasize  

Can only dream if know destination  

Love going somewhere unexpected  

Not knowing is scary  

Thrill of seeing how risk will play out  

-.1 0 .1 -.1 0 .1 -.1 0 .1

Fraction of violations on D+ Fraction of violations on B+ Fraction of violations on B−

Notes: Coefficients from univariate linear regressions of the fraction of SD violations on D+, B+ and
B− on each of 7 ratings (where 1 = “completely disagree” and 5 = “completely agree”). N = 79.

D.2 Attitudes towards surprise trips

Rating of surprise trips At the end of the survey, respondents were asked to rate

on a scale from 0 to 100 how much overall they liked the concept of “surprise trip”

presented in the study. In line with the choice data, views tended to be positive but

with large heterogeneity: the mean (median) rating was 53.3 (60), with a standard

deviation of 30.6. As expected, this rating correlates very well with the various

measures of preference for randomization and delay considered in this paper.

Motives for the rating Respondents who gave a rating of at least 50 (less than

50) to the concept of surprise trip were asked to rank a set of reasons for why they

liked (disliked) the concept. Figure D4 shows the distribution of answers.
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Figure D4: Motives for liking (top) vs. disliking (bottom) surprise trip lotteries
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Unique holiday experience   
I think I would live.   

Possibility of daydreaming about   
the various places I could go to.   

Having no clear expectations   
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No regret if I leave it   
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Rank in order of importance:
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 Disappointment if selected destination  
is different from the one I hoped for.   

 Stress of going on vacation  
feeling unprepared.   

Cannot daydream about my holidays   
if I do not know where I am going.   

Anxiety of waiting until the  
destination is revealed.   

 Inability to plan the activities   
 I want during my vacation.   
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Rank in order of importance:

Notes: Top panel: Distribution of answers to the question: “What do you like the most in the idea
of a surprise lottery over holiday trips? Please rank the following aspects in order of importance
[...].”; only asked to the 48 respondents who gave a rating ≥ 50 (out of 100) to the concept of
“surprise trip”. Bottom panel: Distribution of answers to the question: “What do you find
unappealing in the idea of a surprise lottery over holiday trips? Please rank the following aspects in
order of importance, starting with the aspect you find the most unappealing [...].”; only asked to the
35 respondents who gave a rating < 50 (out of 100) to the concept of “surprise trip”.
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E Stochastic choice benchmarks

Below I summarize simulation exercises conducted to understand the implications of

4 stochastic choice models for (i) the prevalence of SD violations; (ii) the correlation

between violations in favor of randomization vs. certainty; (iii) the shape of violations

(link to P-MON).

General approach To account for sampling error, I draw 1,000 simulations for

each benchmark, which I compare to the actual distribution. For all benchmarks, the

simulations take as given respondents’ preferences over (sure) destinations, thus only

perturbing their choices when comparing a trip lottery to a sure destination. Doing so

allows me to compute the total number and fraction of SD violations at the individual

level in exactly the same way for the actual and simulated choices i.e., using the

unambiguous relation ⪰∗. For each respondent, I then generate counterfactual indices

for the number and fraction of SD violations on D+ (all 24 dominated lotteries), B+

(symmetric subset of 11 dominated lotteries), and B− (11 dominant lotteries).

E.1 Benchmark 1: Uniform probability of mistake

Assumptions and implementation This simple benchmark assumes that respon-

dents have standard preferences (satisfying stochastic dominance), but make imple-

mentation mistakes with a 10% chance when choosing between Options A and B. The

preference flips were simulated by taking iid draws (across respondents and DPs) from

a Bernoulli distribution X ∼ B(p) with p = 0.1, where X = 1 corresponds to a flip.

The value of p = 0.1 was picked to be an upper bound on the observed proportion of

inconsistencies in the DPs involving two sure options, which is 0.07 on average when

the ranking and valuations agree (see Figure B2 for a breakdown).

Main findings The null of equality of distributions for the actual vs. each of the

simulated indices is comfortably rejected for SD violations on D+ and B+, while the

evidence is more mixed for violations on B−. Of note, the simulation fails to reproduce

the long tail of high-frequency violations that appears in the actual data.41 Looking

41For robustness, I also examine the distribution of individual-level indices assuming a probability
p = 0.2 of preference flip, which approximately matches the average prevalence rate of SD violations
observed for dominated lotteries. The distribution of simulated indices remains too compressed to
match the empirical data, with clear statistical differences for both classes of dominance problems.
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at the individual-level relationship between SD violations on B+ and B− in the 1,000

simulated datasets, the median correlation is positive and equal to 0.13 (0.02) for

the total number (fraction) of SD violations, with only 10% (39%) of correlation

coefficients being negative. The null hypothesis of zero correlation on average (µρ = 0)

is easily rejected in both cases in favor of µρ > 0, contradicting the actual data.

E.2 Benchmark 2: Heterogeneous probability of mistake

Assumptions and implementation Instead of imposing a uniform probability of

mistake across respondents, this benchmark assumes that each respondent i makes

a mistake with probability pi drawn from some distribution F with mean µ1 = 0.1.

The distribution F was chosen to approximately match the empirical distribution F̂ of

inconsistency rates on comparisons between two sure options. As this distribution is

right-skewed (µ3 = 2.9), with most respondents exhibiting no inconsistency, I assume

pi ∼ Beta(α, β) with α = 0.1 and β = 0.9 (yielding µ1 = 0.1 and µ3 = 2.5).

Main findings This benchmark accommodates more heterogeneity in the distribu-

tion of indices and does a fairly good job at approximating the data on B− (with an

underestimation at the 75th percentile). However, major differences remain between

the actual and simulated datasets for violations on D+ and B+. In addition, allowing

for heterogeneity in the probability of mistake generates strong positive correlations

between violations on B+ vs. B− i.e., above 0.5 in all 1,000 simulations, with a median

of 0.82 (0.81) for the number (fraction) of SD violations.42

E.3 Benchmark 3: Random valuations model

A plausible conjecture is that valuations are measured with error because of the diffi-

culty of the exercise. Benchmark 3 allows for stochastic valuation errors by assuming

that respondent i decides in each DP l as if their valuation for destination k was given

by ṽik(l) = vik + ϵik(l), where ϵ
i
k(l) ∼ N (0, σ2) is a shock drawn iid across respondents

and DPs (and vik is respondent i’s reported valuation for destination k). I conduct

simulations with σ = 20 and truncate valuations at 0 and 500 so that:

42For completeness, I also re-ran the simulations for pi ∼ Beta(0.2, 0.8), yielding µ1 = 0.2 and
µ3 = 1.4. In this case, the exercise also does a good job at matching the data for problems in B+

(and D+ to a lower extent), while fit remains very good on B−. However, the positive correlation
between SD violations on B+ vs. B− remains high (if not stronger) in all simulations.
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ṽik(l) =


0 if vik + ϵik(l) ≤ 0

vik + ϵik(l) if vik + ϵik(l) ∈ (0, 500)

500 if vik + ϵik(l) ≥ 500

Setting σ = 20 would generate a proportion of preference flips of ≈ 10% in DPs involv-

ing two sure destinations (i.e., P{ṽij(l) < ṽik(l)} ≈ 0.108 across all 1,000 simulations),

in line with the assumption made in Benchmarks 1 & 2.43

Main findings This benchmark greatly underestimates the prevalence rate of SD

violations both for dominated and dominant lotteries, although differences between

the actual and simulated distributions are only significant for D+ and B+. The

correlation between violations on B+ vs. B− is positive in all samples, with a median

of 0.46 (0.49) for the number (fraction) of SD violations. Importantly, according

to this benchmark, the probability of choosing the dominated option should be (i)

independent of p and (ii) lower for destinations that are further apart in the DM’s

ranking (i.e., for which the distance in valuations is larger). To see this, note that

respondent i chooses (xj, p;xk, 1−p) over xj in DP l if p[vij+ϵ
i
j(l)]+(1−p)[vik+ϵik(l)] >

vij+ϵ
i
j(l) (breaking ties in favor of the sure option). Rearranging the expression yields

ϵik(l)− ϵij(l) > vij − vik. While (ii) matches the data, (i) does not.44

E.4 Benchmark 4: Random utility model

Assumptions and implementation A related but different model assumes that

additive shocks occur on utilities instead of valuations, as in standard random utility

models. Since the model assumes risk neutrality, this assumption amounts to impos-

ing an additive error on the expected value of a lottery. In this case, respondent i

will choose Option B in DP l if Ep[v
i(xB)] + ϵiB(l) > vi(xA) + ϵiA(l) where ϵ

i
A and ϵiB

43Note that the model predicts more reversals (choosing xk from {xj , xk} despite xj ≻ xk) for two
trips that are closer in the DM’s preferences. The data provides limited support for this prediction.
First, while the difference ∆v := vj − vk is on average smaller for respondents who chose xk from
{xj , xk} instead of xj (∆v = £37 vs. £98, p = 0.001), this difference is mostly driven by the small
set of respondents for whom vj −vk ≤ 0. Second, the probability of reversal between xj and xk does
not increase as the distance in ranks |j − k| goes down (see Figure B2).

44These observations do not rely on shocks being additive e.g., assuming multiplicative shocks to
valuations, the DM chooses the lottery (xj , p;xk, 1 − p) over the sure option xj in DP l provided

that p[ϵij(l)v
i
j ] + (1− p)[ϵik(l)v

i
k] > ϵij(l)v

i
j ⇒ ϵik(l)

ϵij(l)
>

vi
j

vi
k

(independent of p).
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are taste shocks drawn iid across respondents and DPs. To maximize comparability

with Benchmark 3, I again draw iid shocks ϵiA(l), ϵ
i
B(l) ∼ N (0, σ2) with σ = 20,

equivalent to ≈ 10% of preference flips in DPs involving two sure destinations (i.e.,

P{vi(xB) + ϵiB(l) > vi(xA) + ϵiA(l)} ≈ 0.111 across all 1,000 simulations).

Main findings Benchmark 4 better matches certain moments of the data than

Benchmark 3, especially for violations on B− (mean and 75th percentile), and accom-

modates more heterogeneity. However, it generally underestimates the prevalence

of SD violations, with statistically significant differences between the simulated and

actual distributions detected in most cases (except on B+). In addition, the cor-

relation between SD violations on B+ vs. B− is again positive in (virtually) all

samples, with a median correlation coefficient of 0.32 (0.44) for the number (fraction)

of SD violations. Finally, this benchmark would generate a higher proportion of SD

violations as the utility difference between the two options goes down (e.g., as p in-

creases on B+). Indeed, respondent i chooses (xj, p;xk, 1 − p) over xj provided that

pvij + (1 − p)vik + ϵiB(l) > vij + ϵiA(l), that is, ϵ
i
B(l) − ϵiA(l) > (1 − p)(vij − vik). Thus,

P-MON should not be violated in the aggregate i.e., the fraction of SD violations

should not increase when p decreases from 0.9 to 0.5, which contradicts the data.45

F Theoretical appendix

F.1 Discussion of Observation 2

In Section 2.2 of the main text, I discuss the fact that if H is a valid measure of

uncertainty and ψ is such that ψ(0) = 0, ψ′ > 0, and ψ′′ ≤ 0, then ⪰ cannot violate

P-MON on B+
∼ (Observation 2). I present a proof of Observation 2 below and explain

how P-MONmay be violated (i) on B+
∼ by convexifying ψ; (ii) on B+

≻ for any monotone

ψ; (iii) on D+
∼ for any monotone ψ if |supp(p)| ≥ 3.

Proof of Observation 2. If ψ is globally concave, then ψ ◦H is globally concave,

as ψ is strictly increasing and H is globally concave (by definition of a valid measure).

45At the individual level, violations of P-MON may still occasionally occur in such a model given
that shocks are drawn iid across DPs. For instance, taking DP l ∈ {2, 18} (see Table 3), one could
simultaneously have 0.5vi1 + 0.5vi2 + ϵiB(2) > vi1 + ϵiA(2) and v

i
1 + ϵiA(18) > 0.9vi1 + 0.1vi2 + ϵiB(18).
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The DM strictly prefers xj to the lottery (xj, p;xk, 1− p) where xj ≻ xk if

vj > pvj + (1− p)vk + αΨ(p) ⇐⇒ ∆v

α
> f(p) :=

Ψ(p)

1− p

where ∆v := vj − vk. It can be easily seen that

f ′(p) =
Ψ′(p)(1− p) + Ψ(p)

(1− p)2
≥ 0 ∀ p ∈ (0, 1)

This follows from the concavity of Ψ, which implies Ψ(1) ≤ Ψ(p) + Ψ′(p)(1 − p),

together with the fact that Ψ(1) = 0. In other words, if ψ is globally (weakly)

concave, the DM will switch at most once from xj to (xj, p;xk, 1 − p) as p increases

i.e., P-MON cannot be violated. Q.E.D.

P-MON violations on B+
∼ by convexifying ψ Using the residual variance as an

example, Figure F1 shows how the shape of uncertainty Ψ = ψ ◦H and utility Uα,Ψ

change for different levels of convexity of ψ (i.e., ψ(H) = Hγ with γ ∈ {1, 2, 5, 10}).
To facilitate comparisons, I normalize H to be between 0 and 1 by dividing it by its

maximum value. The transformed measure is hump-shaped, allowing for violations

of P-MON. The figure is nearly identical when using the Shannon entropy instead.

P-MON violations on B+
≻ If the DM violates stochastic dominance at some

d ∈ B+
≻ (strict dominance problem with a binary-outcome lottery), then they must

violate P-MON as well. To see this, suppose there exists p∗ ∈ (0, 1) such that

(xj, p
∗;xk, 1− p∗) ≻ xi for three prizes xi, xj, xk with xi ≻ xj ≻ xk. By the represen-

tation, Uα,Ψ(p
∗) = p∗vj + (1− p∗)vk + αΨ(p∗) > vi. Note that lim

p→1
Uα,Ψ(p) = vj < vi.

Since Uα,Ψ(p) is continuous, there must be some p̄ ∈ (p∗, 1) such that Uα,Ψ(p̄) < vi,

or equivalently, xi ≻ (xj, p̄;xk, 1− p̄), implying a violation of P-MON.

P-MON violations when |supp(p)| ≥ 3 By a similar logic, P-MON violations

can occur on weak dominance problems if |supp(p)| ≥ 3. For instance, for any p∗

such that Uα,Ψ(p
∗) = p∗i vi+p

∗
jvj+p

∗
kvk+αΨ(p∗) > vi (with vi > vj > vk), one can find

ϵ > 0 and p∗
ϵ = (p∗i , p

∗
j +ϵ, p

∗
k−ϵ) such that vi > p∗i vi+(p∗j +ϵ)vj+(p∗k−ϵ)vk+αΨ(p∗

ϵ),
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Figure F1: Shape of uncertainty and SD violations for Ψ(p) =

(
n
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Notes: Plots of the level of uncertainty Ψ(p1) =
(
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1/2

)γ

(left panel) and utility Uα,Ψ(p1, v1, v2)

= p1v1 + (1− p1)v2 + αΨ(p1) (right panel) for α = 30, (v1, v2) = (450, 400) and γ ∈ {1, 2, 5, 10}.

which follows by continuity and the fact that lim
ϵ → (1−p∗j )

Uα,Ψ(pϵ) = vj.
46

F.2 Optimal solution for specific measures of uncertainty

Below I examine the optimal solution to the following maximization problem

max
{pk}nk=1

n∑
k=1

pkvk + αΨ(p,v) s.t. (1a) :
n∑

k=1

pk = 1 and (1b) : pk ≥ 0 ∀k

for 3 measures of uncertainty (assuming ψ = I): (i) residual variance Ψ(p,v) =∑n
k=1 pk(1− pk); (ii) Shannon entropy Ψ(p,v) =

∑n
k=1 pk ln(pk); and (iii) variance in

valuations Ψ(p,v) =
∑n

k=1 pk(vk − Ep[v])
2. Define the Lagrangian for this problem:

L(p) :=
n∑

k=1

pkvk + αΨ(p,v)− λ(
n∑

k=1

pk − 1) +
n∑

k=1

µkpk

46For example, if Ψ(p,v) =
∑n

k=1 pk(vk−Ep[v])
2, (v1, v2, v3) = (450, 400, 350), and α = 0.08, it is

easy to verify that (x1, 0.2;x2, 0.5;x3, 0.3) ≻ x1 ∼ (x1, 0.2;x2, 0.6;x3, 0.2) ≻ (x1, 0.2;x2, 0.7;x3, 0.1).
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where λ and {µk}nk=1 are the Lagrange multipliers on (1a) and (1b).

Residual variance Differentiating the Lagrangian, the first-order condition for pk

is vk +α(1− 2pk)−λ+µk = 0. A solution p∗ with corners exists if µk > 0 for some k

(implying that pk = 0 by the Kuhn-Tucker complementary slackness conditions). Let

J := supp{p∗} be the set of all destinations xj such that p∗j > 0. By Kuhn-Tucker,

µj = 0 for all j ∈ J . Combining the FOCs for two j, k ∈ J yields:

vj + α(1− 2pj) = vk + α(1− 2pk) ⇐⇒ pj = pk +
vj − vk
2α

Summing over all j ∈ J and using the fact that
∑

j∈J pj = 1:

∑
j∈J

[
pk +

vj − vk
2α

]
= 1 =⇒ pk =

1

|J |
− 1

2α|J |
∑
j∈J

(vj − vk)

If p∗ ∈ int∆n(X), the solution is thus p∗k =
1
n
− 1

2α
[v̄− vk] where v̄ = 1

n

∑n
j=1 vj. Note

that p∗k >
1
n

⇐⇒ vk > v̄ and p∗ →
(
1
n
, ..., 1

n

)
as α → ∞. If p∗ ̸∈ int∆n(X), because

utility is strictly increasing in vk for all k, the solution assigns positive probability only

to the first |J | destinations in the DM’s ordering. In the limit as α → 0, p∗ = δx1 .

Shannon entropy I ignore constraint (1b), i.e., pk ≥ 0 for all k, and will show that

it is never binding. Differentiating the Lagrangian, the first-order condition for pk is

vk − α ln(pk)− α− λ = 0. Combining the FOCs for two j, k ∈ J yields:

ln

(
pj
pk

)
=
vj − vk
α

⇐⇒ pj = exp

(
vj − vk
α

)
pk

Summing over all j ∈ {1, ..., n} and using the fact that
∑n

j=1 pj = 1:

1 =
n∑

j=1

exp

(
vj − vk
α

)
pk =

∑n
j=1 exp(vj/α)

exp(vk/α)
pk =⇒ p∗k =

exp(vk/α)∑n
j=1 exp(vj/α)

Note that p∗k ∈ (0, 1) for any vector of valuations v and any α, so (1b) is indeed never

binding. Furthermore, p∗ tends to
(
1
n
, ..., 1

n

)
as α → ∞ or as the difference between

any two valuations (vj−vk) tends to 0. The entropy case has properties that are very

similar to the residual variance case, except for the absence of corner solutions.
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Variance in valuations The general problem does not admit a closed-form solu-

tion. For n = 2, the problem simplifies to maxp∈[0,1] pvj+(1−p)vk+αp(1−p)(vj−vk)2.
Taking the first-order condition yields p∗ = 1

2
+ 1

2α∆v
if α > 1

∆v
(p∗ = 1 otherwise).

Note that p∗ → 1
2
as ∆v → ∞; in other words, the DM prefers more uncertainty

as the two destinations over which they randomize are further apart in their prefer-

ences. It is easy to see that variance violates X-MON even for n = 2 by observing

that xj ≻ (xj, p;xk, 1 − p) ⇐⇒ vj > pvj + (1 − p)vk + αp(1 − p)(vj − vk)
2, i.e.,

αp∆v < 1. Thus, for ∆v large enough, a decrease in vk (holding vj fixed) increases

the chances that the DM will prefer the lottery over xj.

F.3 Theories of expectation-based reference dependence

SD violations may occur if the DM judges each outcome of a lottery p relative to an

expectation-based reference point and experiences gain-loss utility when the realized

outcome deviates from it. I consider the simple case in which the reference point is

unidimensional and depends only on the DM’s valuation of each trip so that U(p|r) =∑n
k=1 pk [vk + ν(vk|r)], where r is a reference lottery and ν(vk|r) is the gain-loss utility

of receiving outcome xk (valued at vk), given r. Below I study two classes of models,

which assume that the reference lottery is the one that the DM chose (r = p).

Models of Disappointment Aversion (DA) The first class of models introduced

by Bell (1985) and Loomes and Sugden (1986) takes the reference point to be the

expected utility of the chosen lottery. The gain-loss utility of outcome xk is thus

ν(vk|p) := µ(vk − Ep[v]), where µ(.) is a gain-loss function such that µ(0) = 0.

Kőszegi and Rabin (KR) The second class of preferences are those induced by

the Choice-Acclimating Personal Equilibrium (CPE) concept of Kőszegi and Rabin

(2007), in which the choice is the reference point. After every realization xk, the DM

compares vk to what was expected given p i.e., ν(vk|p) :=
∑n

j=1 pjµ(vk − vj).

To facilitate comparisons between models, I assume that the gain-loss function is of

the form µ(∆v) = (∆v)γ if ∆v ≥ 0 and −λ(−∆v)γ if ∆v < 0. Below I discuss the

two (most frequent) cases of linear and quadratic gain-loss i.e., γ ∈ {1, 2}.
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CASE 1: Linear gain-loss utility (γ = 1) Consider any binary-outcome lottery

p given by (xj, p;xk, 1− p) where xj ≻ xk and let Ep[v] = pvj + (1− p)vk. With two

outcomes, DA and KR are equivalent. The DM’s utility of lottery p is

UKR(p|p) = Ep[v] + (1− λ)p(1− p)(vj − vk) = UDA(p|p)

Note that (xj, p;xk, 1−p) ≻ xj iff Ep[v]+(1−λ)p(1−p)(vj−vk) > vj, i.e., (1−λ)p > 1.

This can only happen if λ < 0, which contradicts loss aversion (λ > 1). Furthermore,

even if λ < 0, the DM will switch at most once from xj to (xj, p;xk, 1−p) as p increases
i.e., P-MON must be satisfied on the set of weak dominance problems, B+

∼. For strict

dominance problems such as {xi, (xj, p;xk1 − p)} with xi ≻ xj ≻ xk, both P-MON

and X-MON may be violated if λ < 0.47 Beyond, it can be shown that P-MON and

X-MON may be violated with lotteries containing more than two outcomes.

CASE 2: Quadratic gain-loss utility (γ = 2) When µ(.) is quadratic, KR

corresponds to the mean-variance case with α = 1−λ (see Masatlioglu and Raymond

(2016)). Thus, for λ < 1, KR may violate both X-MON and P-MON, except on B+
∼.

DA may generate violations of both P-MON and X-MON even on B+
∼.

48

F.4 Ambiguity aversion and hedging

One could treat a trip xj as a Savage act {fj(ω)}ω∈Ω, assigning different payoffs in

different states of the world ω ∈ Ω. Below I show how a DM might prefer pfj + (1−
p)fk ≻ fj ≻ fk if (i) they hold multiple priors π ∈ ∆(Ω); (ii) they believe that Nature

is adversarial in the sense of Gilboa and Schmeidler (1989) so that

fj ⪰ fk ⇔ min
π∈Π

∑
ω∈Ω

π(ω)fj(ω) ≥ min
π∈Π

∑
ω∈Ω

π(ω)fk(ω)

As an example, assume Ω := {ω1, ω2} with π := Pr{ω = ω1} and there are two

trips xj, xk, which yield payoffs (fj(ω1), fj(ω2)) = (2, 5) and (fk(ω1), fk(ω2)) = (4, 1).

For instance, Ω could capture the weather with ω1 = “sun” and ω2 = “rain”, and

47To see this, note that xi ≻ (xj , p;xk, 1−p) ⇐⇒ vi > [(2−λ)p− (1−λ)p2](vj −vk). For λ < 0,
Γ(p) := (2− λ)p− (1− λ)p2 attains its maximum at p = 2−λ

2−2λ . Because Γ(p) > 0 for all p, the RHS
expression is increasing in the payoff difference (vj − vk), implying a potential violation of X-MON.

48In this case, xj ≻ (xj , p;xk, 1−p) ⇐⇒ vj > Ep[v]+p(vj −Ep[v])
2−λ(1−p)(vk −Ep[v])

2 i.e.,
1 > [p(1− p)− λp2]∆v. The RHS expression attains its maximum at p = 1

2(1+λ) ∈ (0, 1) if λ > − 1
2 .
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each destination differing in the quality of outdoor and indoor activities. If forced to

commit to a destination, the DM will choose xj, which yields a worst possible payoff

of 2. Now consider a mixed act fp
j,k := pfj + (1− p)fk for some probability p ∈ (0, 1).

The optimal p∗ solves 2p+ 4(1− p) = 5p+ (1− p), yielding p∗ = 1
2
. In other words,

the DM will prefer a “mixed” act, which gives minimum payoff guarantees under any

state of the world, to a more extreme act. More generally, assume fk(ω1) > fj(ω1),

fk(ω2) < fj(ω2) and fj(ω1) = min{fj(ω1), fj(ω2)} > fk(ω2) = min{fk(ω1), fk(ω2)}.
Let p∗ solve pfj(ω1) + (1− p)fk(ω1) = pfj(ω2) + (1− p)fk(ω2) > fj(ω1) i.e.,

p∗ =
fk(ω1)− fk(ω2)

fk(ω1)− fj(ω1) + fj(ω2)− fk(ω2)

Clearly, p∗fj + (1 − p∗)fk ≻ fj ≻ fk. The payoff function is piecewise linear. It is

increasing in p for all p < p∗ and decreasing in p for p > p∗. In particular:

• If p < p∗, min{fp
j,k(ω1), f

p
j,k(ω2)} = fp

j,k(ω2) and lim
p→0

fp
j,k(ω2) = fk(ω2)

• If p > p∗, min{fp
j,k(ω1), f

p
j,k(ω2)} = fp

j,k(ω1) and lim
p→1

fp
j,k(ω1) = fj(ω1).

Let p̃ ∈ (0, p∗) solve fp
j,k(ω2) = fj(ω1). Then for all p ∈ [p̃, 1], min{fp

j,k(ω1), f
p
j,k(ω2)} ≥

fj(ω1). In words, if the DM prefers the mixed act fp
j,k to the simple act fj at p = p̃,

then they will still (weakly) prefer fp
j,k for all p > p̃ i.e., P-MON must be satisfied.

Trust and hedging It is unlikely that preference for randomization reflects hedging

concerns due to respondents mistrusting the experiment. First, self-reported mistrust

was low overall. At the end of the survey, respondents were asked to rate their level

of trust on a scale from 1 to 5 (1 = “Do not trust at all”; 5 = “Trust completely”)

regarding 3 aspects of the experiment: (i) “The trips offered in this study are indeed

worth £420.”; (ii) “The selection procedure strictly follows the rules specified in the

experiment.”; (iii) “The lottery draws are indeed random.” Across all statements, the

fraction of respondents who gave a trust rating of 4 or 5 was around 50% or more,

and at most 23% gave a rating of 1 or 2 on any statement. In addition, I examined

regressions of each trust rating on various measures of preference for randomization

and delay. Virtually all coefficients are insignificant, and the few significant ones in

fact show a negative relationship between mistrust and preference for randomization

or delay (see supplemental appendix at https://osf.io/ya7x6/ for details).
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